´
P. Swider et al.
Compound 8: Rf = 0.56 (silica gel, ethyl acetate/hexanes, 3 : 2),
0.48 (silica gel, acetone/hexanes, 2 : 3); m.p. 201.3–203.7 ◦C; 1H
NMR (600 MHz, CDCl3, 25 ◦C, TMS): δ = 2.08 (s, 6H, CH3), 2.12 (s,
6H, CH3), 2.20 (s, 3H, CH3), 2.36 (s, 3H, CH3), 6.02 (d, J(H,H) = 4.1 Hz,
1H, β-H), 6.05 (d, J(H,H) = 5.5 Hz, 1H, β-H), 6.52 (m, 1H, β-H), 6.57
(d, J(H,H) = 5.5 Hz, 1H, β-H), 6.61 (d, J(H,H) = 4.1 Hz, 1H, β-H),
6.68 (d, J(H,H) = 4.7 Hz, 1H, β-H), 6.94 (s, 2H, mesityl), 6.96 (d,
[2] (a) C. Erben, S. Will, K. M. Kadish. Porphyrin Handbook, Vol. 2,
K. M. Kadish, K. M. Smith, R. Guilard (Eds). Academic Press:
San Diego, CA, 2000, 233; (b) I. Aviv, Z. Gross. Corrole-based
applications. Chem. Commun. 2007, 1987; (c) D. P. Goldberg.
Corrolazines: new frontiers in high-valent metalloporphyrinoid
stability and reactivity. Acc. Chem. Res. 2007, 40, 626;
(d) N. Y. Edwards, R. A. Eikey, M. I. Loring, M. M. Abu-Omar. High-
valent imido complexes of manganese and chromium corroles.
Inorg. Chem. 2005, 44, 3700.
[3] (a) T. Ding, E. A. Alema´n, D. A. Modarelli, C. J. Ziegler. Photophysical
properties of a series of free-base corroles. J. Phys. Chem. 2005, 109,
7411; (b) B. Ventura, D. Esposti, B. Koszarna, D. T. Gryko, L. Flamigni.
Photophysical characterization of free-base corroles, promising
chromophores for light energy conversion and singlet oxygen
generation. New J. Chem. 2005, 29, 1559; (c) M. Tasior, D. T. Gryko,
D. J. Pielacin´ska, A. Zanelli, L. Flamigni. Trans-A2B-corroles bearing
a coumarin moiety – from synthesis to photophysics. Chem. Asian J.
2010, 5, 130.
[4] (a) Z. Gross, N. Galili, I. Saltsman. The first direct synthesis of corroles
from pyrrole. Angew. Chem. Int. Ed. 1999, 38, 1427; (b) R. Paolesse,
S. Nardis, F. Sagone, R. G. Khoury. Synthesis and functionalization
of meso-aryl-substituted corroles. J. Org. Chem. 2001, 66, 550;
(c) D. T. Gryko, K. Jadach. A simple and versatile one-pot synthesis
of meso-substituted trans-A2B-corroles. J. Org. Chem. 2001, 66,
4267; (d) T. H. Ngo, N. Puntoriero, F. Nastasi, K. Robeyns, L. Van
Meervelt, S. Campagna, W. Dehaen, W. Maes. Synthetic, structural,
and photophysical exploration of meso-pyrimidinyl-substituted
AB2-corroles. Chem. Eur. J. 2010, 16, 5691.
[5] R. B. Du, C. Liu, D. M. Shen, Q. Y. Chen. Partial bromination and
fluoroalkylation of 5,10,15-tris(pentafluorophenyl)corrole. Synlett
2009, 16, 2701.
[6] J. Shao, J. Shen, Z. Ou, E. Wenbo, B. Koszarna, D. T. Gryko,
K. M. Kadish. Electrochemistry and spectroelectrochemistry of
meso-substituted free-base corroles in nonaqueous media:
reactions of (Cor)H3, [(Cor)H4]+, and [(Cor)H2]−. Inorg. Chem. 2006,
45, 2251.
[7] (a) A. Mahammed, Z. Gross. Chemiluminescence enhancement
and energy transfer by the aluminium(III) complex of an
amphiphilic/bipolar and cell-penetrating corrole. Dalton Trans.
2010, 39, 2998; (b) D. E. Lansky, D. P. Goldberg. Hydrogen atom
abstraction by a high-valent manganese(V)-oxo corrolazine. Inorg.
Chem. 2006, 45, 5119.
[8] C. Tardieux, C. P. Gros, R. Guilard. On corrole chemistry. An
isomerizationstudyandoxidativecleavageofthecorrolemacroring
to a biliverdin structure. J. Het. Chem. 1998, 35, 965.
∼
J(H,H) = 4.7, 1H, β-H), 6.97 (s, 2H, mesityl), 6.98 (d, J(H,H) 4.2 Hz,
=
1H, β-H), 7.75 (d, J(H,H) = 8.1 Hz, 2H, NC-C6H4), 7.98 (d, J(H,H) =
8.1 Hz, 2H, NC-C6H4), 9.0 ppm (bs, 3H, NH); 13C NMR (150 MHz,
CDCl3, 25 ◦C, TMS): δ = 20.0, 20.1, 21.10, 21.13, 115.1, 116.3, 117.3,
117.8, 118.2, 119.6, 122.9, 126.4, 128.1, 128.9, 129.3, 130.6, 131.5,
132.2, 132.7, 132.8, 134.4, 134.5, 134.7, 135.8, 137.0, 137.4, 137.8,
137.9, 138.1, 138.2, 142.1, 154.3, 160.9, 173.1 and 182.0 ppm; IR
(film): ν bar = 804, 1285, 1603, 1681, 2230 (CN), 2919, 3264 cm−1
(N–H); UV–Vis (CH2Cl2): λ (ε) = 396 (36 800), 557 (26 800), 757 nm
(400 M−1 cm−1); HRMS (FD): m/z calcd. for C44H37N5O2: 667.2947;
found: 667.2953, isotope profiles match.
Compound 9: Rf = 0.49 (silica gel, ethyl acetate/hexanes, 3 : 2),
0.42 (silica gel, acetone/hexanes 2 : 3); m.p. 127.5–128.3 ◦C; 1H
NMR (600 MHz, CDCl3, 25 ◦C, TMS): δ = 2.10 (s, 6H, CH3), 2.15 (s,
6H, CH3), 2.27 (s, 3H, CH3), 2.36 (s, 3H, CH3), 6.08 (d, J(H,H) = 4.1 Hz,
1H, β-H), 6.24 (d, J(H,H) = 4.0 Hz, 1H, β-H), 6.52 (dd, J(H,H) = 5.8 Hz,
1.9 Hz, 1H, β-H), 6.70 (3H, three overlapping signals of two β-H
and one amide NH), 6.84 (d, J(H,H) = 4.0 Hz, 1H, β-H), 6.90 (d,
J(H,H) = 4.7 Hz, 1H, β-H), 6.96 (s, 2H, mesityl), 6.99 (s, 2H, mesityl),
7.83 (m, AAꢁ part of the AAꢁXXꢁ system, 2H, NC-C6H4), 8.02 (m,
AAꢁ part of the AAꢁXXꢁ system, 2H, NC-C6H4), 8.08 ppm (dd, J(H,H)
= 5.8 Hz, 1.9 Hz, 1H, β-H); 13C NMR (150 MHz, CDCl3, 25 ◦C, TMS):
δ = 19.6, 20.1, 21.1, 21.2, 115.3, 115.9, 116.7, 117.2, 117.9, 118.1,
119.8, 124.8, 126.1, 126.4, 128.1, 129.2, 129.3, 130.7, 131.2, 132.4,
132.6, 132.7, 134.3, 134.5, 134.6, 135.0, 136.1, 136.8, 137.0, 138.0,
138.5, 138.7, 142.0, 154.3, 160.9, 170.4 and 182.2 ppm; IR (film): ν
bar = 805, 1283, 1604, 1686, 2230 (CN), 2923, 3239 and 3440 cm−1
;
UV–Vis (CH2Cl2): λ (ε) = 398 (36 900), 565 nm (17 900 M−1 cm−1);
HRMS (FD): m/z calcd. for C44H37N5O2: 667.2947; found: 667.2921,
isotope profiles match.
[9] R. Paolesse, F. Sagone, A. Macagnano, T. Boschi, L. Prodi,
M. Montalti, N. Zaccheroni, F. Bolletta, K. M. Smith. Photophysical
behaviour of corrole and its symmetrical and unsymmetrical dyad.
J. Porphyrins Phthalocyanines 1999, 3, 364.
Acknowledgements
This work has been supported by the Polish Ministry of Science
and Higher Education (Grant No. N N204 263837). Authors thank
Prof. Justin Youngblood and Dr. David Will for amending this
manuscript.
[10] C. P. Gros, J.-M. Barbe, E. Espinoza, R. Guilard. Room-temperature
autoconversion of free-base corrole into free-base porphyrin.
Angew. Chem. Int. Ed. 2006, 45, 5642.
[11] G. R. Geier
III,
J. F. B. Chick,
J. B. Callinan,
C. G. Reid,
W. P. Auguscinski.
A
survey of acid catalysis and oxidation
conditions in the two-step, one-flask synthesis of meso-substituted
corroles via dipyrromethanedicarbinols and pyrrole. J. Org. Chem.
2004, 69, 4159.
Supporting information
[12] B. Koszarna, D. T. Gryko. Efficient synthesis of meso-substituted
corroles in a H2O-MeOH mixture. J. Org. Chem. 2006, 71, 3707.
[13] S. Nardis, G. Pomarico, F. R. Fronczek, M. G. H. Vicente, R. Paolesse.
One-step synthesis of isocorroles. Tetrahedron Lett. 2007, 48, 8643.
[14] S. Nardis, F. Mandoj, R. Paolesse, F. R. Fronczek, K. M. Smith, L. Prodi,
M. Montalti, G. Battistini. Synthesis and functionalization of
germanium triphenylcorrolate: the first example of a partially
brominated corrole. Eur. J. Inorg. Chem. 2007, 2345.
[15] F. Mandoj, S. Nardis, G. Pomarico, M. Stefanelli, L. Schiaffino,
G. Ercolani, L. Prodi, D. Genovese, N. Zaccheroni, F. R. Fronczek,
K. M. Smith, X. Xiao, J. Shen, K. M. Kadish, R. Paolesse. 6-
Azahemiporphycene: a new member of the porphyrinoid family.
Inorg. Chem. 2009, 48, 10346.
Supporting information may be found in the online version of this
article.
References
[1] (a) R. Paolesse. The Porphyrin Handbook, Vol. 2, K. M. Kadish,
K. M. Smith, R. Guilard (Eds). Academic Press: New York, 2000,
201; (b) S. Nardis, D. Monti, R. Paolesse. Novel aspects of corrole
chemistry. Mini-Rev. Org. Chem. 2005, 2, 355; (c) D. T. Gryko,
J. P. Fox, D. P. Goldberg. Recent advances in the chemistry of
corroles and core-modified corroles. J. Porphyrins Phthalocyanines
2004, 8, 1091; (d) R. Guilard, K. M. Kadish, J.-M. Barbe, C. Stern. The
Porphyrin Handbook II, Vol. 18, K. M. Kadish, K. M. Smith, R. Guilard
(Eds). Elsevier: San Diego, 2003, 303; (e) R. Paolesse. Corrole:
the little big porphyrinoid. Synlett 2008, 2215; (f) D. T. Gryko.
Adventures in the synthesis of meso-substituted corroles.
J. Porphyrins Phthalocyanines 2008, 12, 906.
[16] J. F. B. Barata, M. G. P. M. S. Neves, A. C. Tome, M. A. F. Faustino,
A. M. S. Silva, J. A. S. Cavaleiro. How light affects 5,10,15-
tris(pentafluorophenyl)corrole. Tetrahedron Lett. 2010, 51, 1537.
[17] (a) B. Ventura, A. Degli Esposti, B. Koszarna, D. T. Gryko, L. Flamigni.
Photophysical characterization of free-base corroles, promising
chromophores for light energy conversion and singlet oxygen
´
c
wileyonlinelibrary.com/journal/jms
Copyright ꢀ 2010 John Wiley & Sons, Ltd.
J. Mass. Spectrom. 2010, 45, 1443–1451