Communications
2988 – 3000; c) G. Bertrand in Reactive Intermediate Chemistry
(Eds.: R. A. Moss, M. S. Platz, M. Jones, Jr.), Wiley, Hoboken,
NJ, 2004, pp. 329 – 373; d) D. Bourissou, O. Guerret, F. P.
Gabbaꢃ, G. Bertrand, Chem. Rev. 2000, 100, 39 – 92.
ature into different organometallic species by using bases
(NaH, nBuLi, alkoxides, LDA, NaNH2) or ionizing agents
(such as KPF6) in presence of ethylene or amines. Ionization
of the chloride ligand in 2 in the presence of ethylene or
amines allowed formation of cationic complexes 5·HX and 6.
In particular, complex 2 undergoes slow but spontaneous
ligand exchange of the chloride by ethylene to give 5·HCl,
which was dramatically accelerated to be complete within
5 min by addition of KPF6 forming 5·HX (X = PF6); similar
fast reaction rates at room temperature were observed in
formation of 6a–c aided by KPF6. Our previously reported
{Cp*Ir} system required more than 16 h at 708C for ionization
and alkene binding.[4] All of these protic NHC complexes
(5·HX and 6a–c) were deprotonated with strong bases to give
their conjugated bases 5 and 7a–c. However, direct deproto-
nation of the NH function in 2 with NaNH2 or nBuLi in dry
THFallowed formation of 7a, and surprisingly 3, respectively,
whereas the use of nBuLi in iPrOH gave 4 instead 3. Ligand
exchange studies on 3 and 7a–c with ethylene and hydrogen
gas leads to formation of complex 5 and hydride 4, respec-
tively. The observed lability in these studies showed that the
rate formation of 5 and 4 increases in the order 3 @ 7c > 7a >
7b, showing a striking ability to tune reactivity. Notably, 4
alone or 2 with added base were excellent catalysts for the
transfer hydrogenation of acetophenone with low catalyst
loading (1% and 0.05%) and good yield, in complete contrast
to the previously reported {Cp*Ir} system, which was
disappointingly inactive as a catalyst.[4] Furthermore, our
structural studies on protic NHC complexes and imidazol-2-yl
[2] a) S. Dꢁez-Gonzꢂlez, N. Marion, S. P. Nolan, Chem. Rev. 2009,
109, 3612 – 3676; b) N-Heterocyclic Carbenes in Transition Metal
Catalysis (Ed.: F. Glorius), Springer, Heidelberg, 2007; c) N-
Heterocyclic Carbenes in Synthesis (Ed.: S. P. Nolan), Wiley-
VCH, Weinheim, 2006; d) W. A. Herrmann, Angew. Chem.
1309; Angew. Chem. 2002, 114, 1342 – 1363.
[3] a) S. Dꢁez-Gonzꢂlez, S. P. Nolan, Coord. Chem. Rev. 2007, 251,
874 – 883; b) H. Jacobsen, A. Correa, A. Poater, C. Costabile, L.
Cavallo, Coord. Chem. Rev. 2009, 253, 687 – 703; c) P. De Frꢄ-
mont, N. Marion, S. P. Nolan, Coord. Chem. Rev. 2009, 253, 862 –
892; d) F. E. Hahn, M. C. Jahnke, Angew. Chem. 2008, 120,
Chem. 2008, 120, 3166 – 3216.
[4] V. Miranda-Soto, D. B. Grotjahn, A. G. DiPasquale, A. L.
Rheingold, J. Am. Chem. Soc. 2008, 130, 13200 – 13201. N-
heterocyclic carbenes containing an NH group are also called
NH-NHCs, NH-wing-tip NHCs, NH-NR- or NH-NH-stabilized
NHCs, protic NHC complexes, and NHC complexes bearing a
NH residue in the carbene ligand; see reference [5].
[5] a) G. E. Dobereiner, C. A. Chamberlin, N. D. Schley, R. H.
Berros, B. F. Perandones, M. Vivanco, Dalton Trans. 2009, 6999 –
7007; c) S. R. Waldvogel, A. Spurg, F. E. Hahn in Activating
Unreactive Substrates (Eds.: C. Bolm, F. E. Hahn), Wiley-VCH,
Weinheim, 2009, pp. 103 – 122; d) M. A. Huertos, J. Pꢄrez, L.
lics 2008, 27, 2176 – 2178; f) N. Meier, F. E. Hahn, T. Pape, C.
Siering, S. Waldvogel, Eur. J. Inorg. Chem. 2007, 1210 – 1214;
g) S. H. Wiedemann, J. Lewis, J. A. Ellman, R. G. Bergman,
J. Am. Chem. Soc. 2006, 128, 2452 – 2462; h) J. Ruiz, B. F.
j) S. Burling, M. F. Mahon, R. E. Powell, M. K. Whittlesey,
J. M. J. Williams, J. Am. Chem. Soc. 2006, 128, 13702 – 13703;
k) K. L. Tan, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc.
2002, 124, 3202 – 3203; l) R. J. Sundberg, R. F. Bryan, I. F. Taylor,
H. Taube, J. Am. Chem. Soc. 1974, 96, 381 – 392; m) F. E. Hahn,
V. Langenhahn, T. Lꢅgger, T. Pape, D. Le Van, Angew. Chem.
[6] a) G. Song, Y. Su, R. A. Periana, R. H. Crabtree, K. Han, H.
Int. Ed. 2010, 49, 912 – 917; b) E. ꢆlvarez, Y. A. Hernꢂndez, J.
Lꢇpez-Serrano, C. Maya, M. Paneque, A. Petronilho, M. L.
Poveda, V. Salazar, F. Vattier, E. Carmona, Angew. Chem. 2010,
122, 3574 – 3577; Angew. Chem. Int. Ed. 2010, 49, 3496 – 3499;
c) M. A. Esteruelas, F. J. Fernꢂndez-Alvarez, M. Olivꢂn, E.
2007, 46, 3405 – 3408; e) E. ꢆlvarez, S. Conejero, M. Paneque, A.
Petronilho, M. L. Poveda, O. Serrano, E. Carmona, J. Am. Chem.
Soc. 2006, 128, 13060 – 13061; f) M. A. Esteruelas, F. J. Fernꢂn-
13045; g) B. Crociani, F. Di Bianca, A. Fontana, E. Forsellini, G.
Bombieri, J. Chem. Soc. Dalton Trans. 1994, 407 – 414; h) B.
Crociani, F. Di Bianca, A. Giovenco, A. Scrivanti, J. Organomet.
Chem. 1983, 251, 393 – 411; i) K. Isobe, S. Kawaguchi, Hetero-
cycles 1981, 16, 1603 – 1612.
1
systems using 2D H–15N correlations, showed the profound
differences in the N3 nitrogen environment between the
proton-substituted N3 and the basic N3 in imidazol-2-yl
complexes, results which are expected to be a useful basis for
further studies of protic NHC complexes.
Taken together, the fundamental reactivity of protic NHC
carbene complex 2 in presence of ionizing agents or bases
allows its facile transformation, consistent with structures B–
E. Secondary interactions at N3 that involve either hydrogen
acceptance or hydrogen-bond donation together with ligand
exchange processes are highlighted by catalytic behavior of
hydride 4 and the useful reactivity of complexes 3–7a–c. Our
results add protic NHC complexes to a variety of other
diverse compound classes[14] capable of bifunctional activa-
tion of hydrogen or alcohols, but additional work will be
needed to adequately compare the promising chemistry of
protic NHC derivatives with previous work. Thus, further
synthetic, reactivity and catalysis studies on 2 and related
protic NHC complexes are a topic of active investigation.
Received: August 14, 2010
Revised: November 10, 2010
Published online: December 15, 2010
Keywords: homogeneous catalysis · hydrides ·
.
imidazol-2-yl complexes · N-heterocyclic carbenes · ruthenium
[7] See the Supporting Information for full details.
634
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2011, 50, 631 –635