Q. Xu et al. / Tetrahedron Letters 49 (2008) 6440–6441
6441
Table 1
negative substituent (fluorine) (entries 4 and 6) decrease the E val-
ues remarkably probably due to their weaker interaction with the
enzyme. However, fluorine substituted on meta position of the
phenyl group (entry 5) appears to be of not much influence. 4-F-
(entry 6) substitution in the benzene ring requires considerably
longer reaction time (50 h) to achieve about 50% conversion. Dif-
fering from the aromatic cyanohydrins in Table 1, compounds 2i
and 2j (entries 9 and 10) are aliphatic cyanohydrins with phenyl
group substituted on the b or Y carbon atom, which also gave high
E values.
Configuration assignment of the KR products was made by com-
paring the observed optical rotation with those reported in the lit-
eratures2i,4a,6–8,2c (for details, see Table 2 in Supplementary data).
As a result, the acetates have an S configuration, while the unre-
acted cyanohydrins have an R configuration.
Stereoselective acetylation of cyanohydrins 1a–j with vinyl acetate in diethyl ether at
15 oC catalyzed by lipase PS-30
O
OH
OH
O
lipase PS-30 / Vinyl acetate
+
R
CN
, 15 oC
Et2O
R
CN
R
CN
1a-j
2a-j
eeA (3)b
3a-j
Entry
1
R
eeE (2)a
(%)
Ec
Cc
Reaction
time (h)
(%)
(%)
98.3
71.1
48.6
249
191
42
24
2a
In conclusion, we have achieved the kinetic resolution of ten
racemic cyanohydrins via enantioselective acylation by using li-
pase PS-30 as the catalyst. Majority of the substrates gave E values
close to or higher than 100.
2
3
4
5
98.3
98.7
94.3
98.6
33
32
25
33
23.5
H3C
2b
Acknowledgments
47.1
31.3
47.8
244
46
29
25
27
H3CO
We are grateful to The National Natural Science Foundation of
China (Grant No. 20602007) and The State Key Laboratory of Bio-
organic Chemistry and Natural Products Chemistry, SIOC, CAS, for
financial support.
2c
F
Supplementary data
2d
Supplementary data associated with this article can be found, in
F
F
228
References and notes
2e
2f
1. (a) Gregory, R. J. H. Chem. Rev. 1999, 99, 3649–3682; (b) Brussee, J.; Van der Gen,
A. Stereoselective Biocatalysis. In Patel, R. N., Ed.; Marcel Dekker: New York, NY,
2000; pp 289–320; (c) Effenberg, F. Stereoselective Biocatalysis. In Patel, R. N.,
Ed.; Marcel Dekker: New York, NY, 2000; pp 321–342; (d) North, M. Tetrahedron:
Asymmetry 2003, 14, 147–176; (e) Brunel, J.-M.; Holems, I. P. Angew. Chem., Int.
Ed. 2004, 43, 2752–2778; (f) Geng, X.; Zhou, H.; Chen, P.; Xu, Q. Chin. J. Org. Chem.
(Youji Huaxue) 2008, 28, 1157–1168.
6
7
92.8
87.2
93.6
36.5
94
21
50
30
50
25
2. (a) Bevinakatti, H. S.; Banerji, A. A.; Newadkar, R. J. Org. Chem. 1989, 54, 2453–
2455; (b) Effenberger, F.; Gutterer, B.; Ziegler, T.; Eckhardt, E.; Aichholz, R.
Liebigs Ann. Chem. 1991, 47–54; (c) Inagaki, M.; Hiratake, J.; Nishioka, T.; Oda, J. J.
Org. Chem. 1992, 57, 5643–5649; (d) Roos, J.; Stelzer, U.; Effenberger, F.
Tetrahedron: Asymmetry 1998, 9, 1043–1049; (e) Konigsberger, K.; Prasad, K.;
Repic, O. Tetrahedron: Asymmetry 1999, 10, 679–687; (f) Amaral, C.; Brush, E. J.
224 ACS National Meeting Abstract Boston, USA, Aug 18–22, 2002.; (g) Cruz
Silva, M. M.; Sa e Melo, M. L.; Parolin, M.; Tessaro, D.; Riva, S.; Danieli, B.
Tetrahedron: Asymmetry 2004, 15, 21–27; (h) Recuero, V.; Ferrero, M.; Gotor-
Fernandez, V.; Brieva, R.; Gotor, V. Tetrahedron: Asymmetry 2007, 18, 994–1002;
(i) Shen, Z.-L.; Zhou, W.-J.; Liu, Y.-T.; Ji, S.-J.; Loh, T.-P. Green Chem. 2008, 10,
283–286.
3. (a) van Almsick, A.; Buddrus, J.; Honicke-Schmidt, P.; Laumen, K.; Schneider, M.
P. J. Chem. Soc., Chem. Commun. 1989, 1391–1393; (b) Vänttinen, E.; Kanerva, L.
T. Tetrahedron: Asymmetry 1995, 6, 1779–1786; (c) Hanefeld, U.; Li, Y.; Sheldon,
R. A.; Maschmeyer, T. Synlett 2000, 1775–1776; (d) Veum, L.; Kuster, M.;
Telalovic, S.; Hanefeld, U.; Maschmeyer, T. Eur. J. Org. Chem. 2002, 1516–1522;
(e) Belokon, Y. N.; Blacker, J.; Clutterbuck, L. A.; Hogg, D.; North, M.; Reeve, C.
Eur. J. Org. Chem. 2006, 4609–4617; (f) Holt, J.; Arends, I. W. C. E.; Minnaard, A. J.;
Hanefeld, U. Adv. Synth. Catal. 2007, 349, 1341–1344; (g) Hamberg, A.; Lundgren,
S.; Wingstrand, E.; Moberg, C.; Hult, K. Chem. Eur. J. 2007, 13, 4334–4341.
4. (a) Han, S.; Chen, P.; Lin, G.; Huang, H.; Li, Z. Tetrahedron: Asymmetry 2001, 12,
843–846; (b) Chen, P.; Han, S.; Lin, G.; Huang, H.; Li, Z. Tetrahedron: Asymmetry
2001, 12, 3273–3279; (c) Chen, P.; Han, S.; Lin, G.; Li, Z. J. Org. Chem. 2002, 67,
8251–8253.
2g
8
9
72.8
94.1
98.4
82.3
82.6
80.7
17
85
54
47
45
24
20
24
2h
2i
10
314
2j
a
eeE stands for enantiomeric excess of cyanohydrin acetate of the fast reacted
enantiomer of the cyanohydrin. Analysis was performed on Chiralcel OJ-H or OD-H
column with hexane/iPrOH in varying ratios to afford ee values.
b
eeA stands for enantiomeric excess of the slow reacted enantiomer of the cya-
nohydrin, which was obtained after the cyanohydrin was converted into the cor-
responding acetate (but into its propionate for 3g and 3h for HPLC baseline
separation) then subjected to chiral HPLC analysis on Chiralcel OD-H column with
hexane/iPrOH in varying ratios.
c
E = ln[1 À C(1 + eeE)]/ln[1 À C(1 À eeE)], where C = eeE/(eeE + eeA) as defined in
5. (a) Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 104,
7294–7299; (b) Kagan, H. B.; Fiaud, J. C. Topics in Stereochemistry. In Eliel, E. L.,
Wilen, S. H., Eds.; John Wiley and Sons: New York, NY, 1988; pp 249–330. Vol.
18.
Ref. 5.
6. Sakai, T.; Wang, K.; Ema, T. Tetrahedron 2008, 64, 2178–2183.
7. Lee, P.-T.; Chen, C. Tetrahedron: Asymmetry 2005, 16, 2704–2710.
8. Schmidt, M.; Herve, S.; Klempier, N.; Griengl, H. Tetrahedron 1996, 52, 7833–
7840.
of the desired cyanohydrin acetates in good chemical yield and
enantiomeric purity. Data in Table 1 show that the bulky aryl
group (entries 7 and 8) and the aryl group bearing a strong electro-