RSC Advances
Paper
27
ꢀ
3 (a) J. A. Marshall, Chem. Rev., 1996, 96, 31–48; (b)
J. A. Marshall, in Organometallics in Synthesis, ed. M.
Schlosser, J. Wiley and Sons, Chichester, U.K., 2002, p. 399;
(c) K. M. Waltz, J. Gavenonis and P. J. Walsh, Angew.
Chem., Int. Ed., 2002, 41, 3697–3699; (d) H. Hanawa,
T. Hashimoto and K. Maruoka, J. Am. Chem. Soc., 2003,
125, 1708–1709; (e) J. G. Kim, K. M. Waltz, I. F. Garcia,
D. Kwiatkowski and P. J. Walsh, J. Am. Chem. Soc., 2004,
126, 12580–12585; (f) Y.-C. Teo, K.-T. Tan and T.-P. Loh,
Chem. Commun., 2005, 1318–1320; (g) R. Takita, K. Yakura,
T. Ohshima and M. Shibasaki, J. Am. Chem. Soc., 2005, 127,
13760–13761; (h) X. Zhang, D. Chen, X. Liu and X. Feng,
J. Org. Chem., 2007, 72, 5227–5233; (i) K. Zheng, B. Qin,
X. Liu and X. Feng, J. Org. Chem., 2007, 72, 8478–8483; (j)
J. Huang, J. Wang, X. Chen, Y. Wen, X. Liu and X. Feng,
Adv. Synth. Catal., 2008, 350, 287–294; (k) I. S. Kim,
M.-Y. Ngai and M. J. Krische, J. Am. Chem. Soc., 2008, 130,
6340–6341; (l) Y. Kuang, X. Liu, L. Chang, M. Wang, L. Lin
and X. Feng, Org. Lett., 2011, 13, 3814–3817; (m) Z. Li,
B. Plancq and T. Ollevier, Chem. – Eur. J., 2012, 18, 3144–
3147.
(S,S)-6. Yield 1.32 g, 86%; white solid; m.p. 110 C; [a]D
¼
ꢁ115.5 (c ¼ 0.2, CHCl3); FTIR 3413, 2964, 2929, 1709, 1662,
1516, 1367, 1326, 1239, 1175, 1069, 982, 926, 864, 778, 649 cmꢁ1
;
1H NMR (200 MHz, CDCl3): d ¼ 0.88 (s, 9H), 0.98 (s, 9H), 1.44 (s,
9H), 3.84–3.89 (m, 1H), 4.07–4.21 (m, 3H), 5.13 (d, J ¼ 9.6 Hz,
1H); 13C NMR (50 MHz, CDCl3): d ¼ 25.84, 26.55, 28.28, 33.56,
34.66, 57.19, 68.50, 75.37, 79.30, 155.55, 166.00. Anal. calcd for
C
27H32N2O3: C, 65.35; H, 10.32; N, 8.97; O, 15.36. Found: C,
65.40; H, 10.42; N, 8.90; O, 15.47. TOF-MS (ESIꢁ) calcd for
(C17H32N2O3–H+): 311.24, found: 310.94.
Acknowledgements
Authors thank CSIR for the nancial support. Debashis Ghosh
is thankful to AcSIR for the Ph.D. enrolment. Analytical Disci-
pline and Centralized Instrumental Facility is gratefully
acknowledged for providing instrumental facilities.
Notes and references
1 For selected examples of asymmetric allylation reactions
¨
used in total synthesis, see: (a) A. Furstner and
4 (a) M. Nakajima, M. Saito, M. Shiro and S. Hashimoto, J. Am.
Chem. Soc., 1998, 120, 6419–6420; (b) T. Shimada, A. Kina,
S. Ikeda and T. Hayashi, Org. Lett., 2002, 4, 2799–2801; (c)
S. E. Denmark and J. Fu, Chem. Commun., 2003, 167–170;
(d) A. Kina, T. Shimada and T. Hayashi, Adv. Synth. Catal.,
2004, 346, 1169–1174; (e) W.-L. Wong, C.-S. Lee,
H.-K. Leung and H.-L. Kwong, Org. Biomol. Chem., 2004, 2,
1967–1969; (f) H. L. Kwong, H. L. Yeung, C. T. Yeung,
W. S. Lee, C. S. Lee and W. L. Wong, Coord. Chem. Rev.,
2007, 251, 2188; (g) A. V. Malkov, M. Bell, M. Orsini,
D. Pernazza, A. Massa, P. Herrmann, P. Meghani and
K. Langemann, J. Am. Chem. Soc., 1997, 119, 9130–9136; (b)
D. Meng, P. Bertinato, A. Balog, D.-S. Su, T. Kamenecka,
E. J. Sorensen and S. J. Danishefsky, J. Am. Chem. Soc.,
1997, 119, 10073–10092; (c) H. Nakamura, K. Nakamura
and Y. Yamamoto, J. Am. Chem. Soc., 1998, 120, 4242; (d)
G. E. Keck, C. A. Wager, T. T. Wager, K. A. Savin,
J. A. Covel, M. D. McLaws, D. Krishnamurthy and V. J. Cee,
Angew. Chem., Int. Ed., 2001, 113, 237–240; Angew. Chem.,
Int. Ed., 2001, 40, 231–234; (e) R. A. Fernandes, A. Stimac
and Y. Yamamoto, J. Am. Chem. Soc., 2003, 125, 14133; (f)
S. Kobayashi, C. Ogawa, H. Konishi and M. Sugiura, J. Am.
Chem. Soc., 2003, 125, 6610–6611; (g) A. B. Smith III,
W. Zhu, S. Shirakami, C. Sfouggatakis, V. A. Doughty,
C. S. Bennett and Y. Sakamoto, Org. Lett., 2003, 5, 761–764;
(h) P. A. Evans, J. Cui and S. J. Gharpure, Org. Lett., 2003, 5,
3883–3885; (i) T. Vilaivan, C. Winotapan, V. Banphavichit,
T. Shinada and Y. Ohfune, J. Org. Chem., 2005, 70, 3464–
3471; (j) G. E. Keck and A. P. Truong, Org. Lett., 2005, 7,
2153–2156; (k) S. E. Denmark and J. Fu, Org. Lett., 2002, 4,
1951–1953; (l) T. Itoh, M. Miyazaki, H. Fukuoka, K. Nagata
and A. Ohs, Org. Lett., 2006, 8, 1295–1297; (m) T. R. Wu
and J. M. Chong, J. Am. Chem. Soc., 2006, 128, 9646–9647;
(n) S. Lou, P. N. Moquist and S. E. Schaus, J. Am. Chem.
Soc., 2007, 129, 15398–15404; (o) S. E. Denmark,
C. S. Regens and T. Kobayashi, J. Am. Chem. Soc., 2007,
129, 2774–2776; (p) K. Maki, R. Motoki, K. Fujii, M. Kanai,
T. Kobayashi, S. Tamura and M. Shibasaki, J. Am. Chem.
Soc., 2005, 127, 17111–17117; (q) V. Rauniyar and
D. G. Hall, J. Org. Chem., 2009, 74, 4236–4241; (r) S. B. Han,
A. Hassan, I. S. Kim and M. J. Krische, J. Am. Chem. Soc.,
2010, 132, 15559–15561.
ˇ
´
P. Kocovsky, J. Org. Chem., 2003, 68, 9659–9668; (h)
´
ˇ
A. V. Malkov, L. Duova, L. Farrugia and P. Kocovsk
Angew. Chem., Int. Ed., 2003, 42, 3674–3677; (i)
J. F. Traverse, Y. Zhao, A. H. Hoveyda and M. L. Snapper,
Org. Lett., 2005, 7, 3151–3154; (j) Q. Chai, C. Song, Z. Sun,
Y. Ma, C. Ma, Y. Dai and M. B. Andrus, Tetrahedron Lett.,
´y,
´
2006, 47, 8611–8615; (k) A. V. Malkov, P. R. Lopez,
´
´ˇ
´
L. Biedermannova, L. Rulısek, L. Duova, M. Kotora,
ˇ
´
F. Zhu and P. Kocovsky, J. Am. Chem. Soc., 2008, 130, 5341–
ˇ´ ´ˇ
´
´
´
5348; (l) A. Kadlcıkova, I. Valterova, L. Duchackova,
´
J. Roithova and M. Kotora, Chem. – Eur. J., 2010, 16, 9442–
9445; (m) B. Bai, L. Shen, J. Ren and H. J. Zhu, Adv. Synth.
Catal., 2012, 354, 354–358.
5 (a) K. Iseki, S. Mizuno, Y. Kuroki and Y. Kobayashi,
Tetrahedron Lett., 1998, 39, 2767–2770; (b) C. Baudequin,
D. Chaturvedi and S. B. Tsogoeva, Eur. J. Org. Chem., 2007,
2623–2629.
6 S. B. Jagtap and S. B. Tsogoeva, Chem. Commun., 2006, 4747–
4749.
7 (a) S. E. Denmark, J. Fu, D. M. Coe, X. Su, N. E. Pratt and
B. D. Griedel, J. Org. Chem., 2006, 71, 1513–1522; (b)
M. Nakajima, S. Kotani, T. Ishizuka and S. Hashimoto,
Tetrahedron Lett., 2005, 46, 157–159; (c) S. Kotani,
S. Hashimoto and M. Nakajimaa, Tetrahedron, 2007, 63,
3122–3132.
2 (a) S. E. Denmark and J. Fu, Chem. Rev., 2003, 103, 2763–
2794; (b) J. W. J. Kennedy and D. G. Hall, Angew. Chem.,
Int. Ed., 2003, 42, 4732–4739; (c) M. Yus, J. C. G. Gomez
´
and F. Foubelo, Chem. Rev., 2011, 111, 7774–7854.
12264 | RSC Adv., 2014, 4, 12257–12265
This journal is © The Royal Society of Chemistry 2014