714
P. Amaladass et al. / Tetrahedron Letters 52 (2011) 711–714
Serebryakov, I. M.; Perepichka, I. F. J. Chem. Soc., Perkin Trans. 2 1999, 505–
513; (e) Suzuki, T.; Takahashi, H.; Nishida, J.; Tsuji, T. Chem. Commun. 1998,
1331–1332; (f) Schmitt, S.; Baumgarten, M.; Simon, J.; Hafner, K. Angew. Chem.,
Int. Ed. 1998, 37, 1078–1081.
to the substituted phenyl moiety. In addition, a bathochromic shift
of the emission maximum was observed for all di(selenophen-2-
yl)pyrroles over furanylpyrroles.
2. Friend, H. R.; Gymer, W. R.; Holmes, A. B.; Burroughes, J. H.; Marks, N. R.;
Taliani, C.; Bradley, C. D. D.; Dos Santos, A. D.; Bredas, L. J.; Logdlund, M.;
Salaneck, W. R. Nature 1999, 397, 121–128.
3. (a) Debad, J. D.; Bard, A. J. J. Am. Chem. Soc. 1998, 120, 2476–2477; (b)
Laquindanum, J. G.; Katz, H. E.; Lovinger, A. J. J. Am. Chem. Soc. 1998, 120, 664–
672; (c) Laquindanum, G. L.; Katz, H. E.; Lovinger, A. J.; Dodabalapur, A. Adv.
Mater. 1997, 9, 36–39.
4. (a) Stutzmann, N.; Friend, H. R.; Sirringhaus, H. Science 2003, 299, 1881–1884;
(b) Drury, C. J.; Mutsaers, C. M. J.; Hart, C. M.; Matters, D. M.; De Leeuw, D. Appl.
Phys. Lett. 1998, 73, 108–110; (c) Garnier, F.; Hajlaoui, R.; Yassar, A.; Srivastava,
P. Science 1994, 265, 1864–1866.
5. (a) Argun, A. A.; Aubert, P.-H.; Thompson, B. C.; Schwendemann, I.; Gaupp, C. L.;
Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmind, A. G.; Reynolds, J. R. Chem.
Mater. 2004, 23, 4401–4412; (b) Argun, A. A.; Cirpan, A.; Reynolds, J. R. Adv.
Mater. 2003, 15, 1338–1341.
The electrochemical parameters of selected 2,5-di(selenophen-
2-yl)pyrroles and 2,5-difuranylpyrroles are listed in Table 1. The
experimental results show that the oxidation potentials of the dif-
uranylpyrroles and di(selenophen-2-yl)pyrroles are less compared
to dithienylpyrroles. The oxidation potentials of monomers 3c and
2c occur at +0.67 and +0.81, respectively, on a platinum disc elec-
trode (Fig. 3). For the 2,5-di(selenophen-2-yl)pyrroles and 2,5-dif-
uranylpyrroles, electrochemical polymer growth can be obtained
by repeated cycling and the film is deposited on the working elec-
trode after multiple cycles (see Supplementary data). From the
experiment, it is obvious that the oxidation potentials of 2,5-dif-
uranylpyrroles are less compared to 2,5-di(selenophen-2-yl)pyr-
roles. Similarly, the oxidation potentials of the monomers of the
2,5-di(selenophen-2-yl)pyrroles are lower than the terselenophene
and the corresponding thienyl analogues.17
6. (a) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000, 100, 2537–
2574; (b) Goldenberg, L. M.; Bryce, M. R.; Petty, M. C. J. Mater. Chem. 1999, 9,
1957–1974.
7. Ferraris, J. P.; Skiles, G. D. Polymer 1987, 28, 179–182.
8. Sørensen, A. R.; Overgaard, L.; Johannsen, I. Synth. Met. 1993, 55, 1626–1631.
9. (a) Lévesque, I.; Leclerc, M. Macromolecules 1997, 30, 4347–4352; (b) Zagorska,
M.; Kulszewics-Bajer, I.; Pron, A.; Sukiennik, J.; Raimond, P.; Kajzar, F.; Attias,
A.-J.; Lapkowski, M. Chem. Mater. 1998, 31, 9146–9149; (c) Della-Casa, C.;
Fraleoni, A.; Costa-Bizzari, P.; Lanzi, M. Synth. Met. 2001, 124, 467–470; (d)
Chen, Y.; Harrison, W. T. A.; Imrie, C. T.; Ryder, K. S. J. Mater. Chem. 2002, 12,
579–585; (e) Audebert, P.; Sadki, S.; Miomandre, F.; Hapiot, P.; Chane-ching, K.
New J. Chem. 2003, 27, 798–804; (f) Thompson, B. C.; Abboud, K. A.; Reynolds, J.
R.; Nakatani, K.; Audebert, P. New J. Chem. 2005, 29, 1128–1134; (g) Just, P. E.;
Chane-ching, K. I.; Lacaze, P. C. Tetrahedron 2002, 58, 3467–3472.
10. Yildiz, E.; Camurlu, P.; Tanyeli, C.; Akhmedov, I.; Toppare, L. J. Electroanal. Chem.
2008, 612, 247–256.
In summary, we have presented a two-step synthesis of an ar-
ray of novel
p-conjugated 2,5-di(selenophen-2-yl)pyrroles 2,
(SeNSe) and 2,5-difuranylpyrroles 3, (ONO) via the Paal–Knorr
reaction as a key step. Photophysical and electrochemical studies
of the various products have been described. A bathochromic shift
of the emission maximum is observed for all SeNSes over ONOs.
The extended conjugation due to the presence of a phenyl moiety
further promotes the bathochromic shift. These SeNSe and ONO
derivatives exhibit lower oxidation potentials than those of their
terselenophene and terthiophene analogues. Electropolymeriza-
tion of the synthesized monomers is in progress in our laboratory.
11. (a) Pappenfus, T. M.; Hermanson, B. J.; Helland, T. J.; Lee, G. G. W.; Drew, S. M.;
Mann, K. R.; McGee, K. A.; Rasmussen, S. C. Org. Lett. 2008, 10, 1553–1556; (b)
Ogura, K.; Zhao, R.; Jiang, M.; Akazome, M.; Matsumoto, S.; Yamaguchi, K.
Tetrahedron Lett. 2003, 44, 3595–3598.
12. (a) Lorpitthaya, R.; Xie, Z. Z.; Sophy, K. B.; Luo, J. L.; Liu, X.-W. Chem. Eur. J. 2010,
16, 588–594; (b) Gorityala, B. K.; Lorpitthaya, R.; Bai, Y.; Liu, X.-W. Tetrahedron
2009, 65, 5844–5848; (c) Yang, R. Y.; Pasunooti, K. K.; Li, F.; Liu, X.-W.; Liu, C.-F.
J. Am. Chem. Soc. 2009, 131, 13592–13593; (d) Gorityala, B. K.; Cai, S. T.;
Lorpitthaya, R.; Ma, J. M.; Pasunooti, K. K.; Liu, X.-W. Tetrahedron Lett. 2009, 50,
676–679; (e) Lorpitthaya, R.; Sophy, K. B.; Luo, J. L.; Liu, X.-W. Org. Biomol.
Chem. 2009, 7, 1284–1287; (f) Wang, Y.; Deng, W.-Q.; Liu, X.-W.; Wang, X. Int. J.
Hydrogen Energy 2009, 34, 1437–1443; (g) Kristian, N.; Yu, Y.; Gunawan, P.; Xu,
R.; Deng, W.-Q.; Liu, X.-W.; Wang, X. Electrochim. Acta 2009, 54, 4916–4924; (h)
Yu, Y.; Hu, Y.; Liu, X.-W.; Deng, W.-Q.; Wang, X. Electrochim. Acta 2009, 54,
3092–3097; (i) Liu, X.-W.; Le, T. N.; Lu, Y. P.; Xiao, Y. J.; Ma, J. M.; Li, X. Org.
Biomol. Chem. 2008, 6, 3997–4003; (j) Cheng, X.-M.; Liu, X.-W. J. Comb. Chem.
2007, 9, 906–908.
Acknowledgements
Financial support from Nanyang Technological University
(RG54/07) and the Ministry of Education Singapore (ARC24/07,
no. T206B1218RS) are greatly acknowledged.
Supplementary data
Supplementary data (experimental procedures, compound
characterization data and spectra) associated with this article can
13. Harding, M.; Hodgson, R.; Nelson, A. J. Chem. Soc., Perkin Trans. 1 2002, 2403–
2413.
14. Niziurski-Mann, R. E.; Cava, M. P. Adv. Mater. 1993, 5, 547–550.
15. Meeker, D. L.; Mudigonda, D. S. K.; Osbon, J. M.; Loveday, D. C.; Ferraris, J. P.
Macromolecules 1998, 31, 2943–2946.
References and notes
16. Röckel, B.; Huber, J.; Gleiter, R.; Schumann, W. Adv. Mater. 1994, 718, 568–571.
17. Nakanishi, H.; Inoue, S.; Otsubo, T. Mol. Cryst. Liq. Cryst. 1997, 296, 335–348.
1. (a) Patra, A.; Bendikov, M. J. Mater. Chem. 2010, 20, 422–433; (b) Skabara, P. J.;
Serebryakov, I. M. Macromolecules 2001, 34, 2232–2241; (c) Lee, B.-L.;
Yamamoto, T. Macromolecules 1999, 32, 1375–1382; (d) Skabara, P. J.;