Journal of the American Chemical Society
COMMUNICATION
external oxidants also results in a clean and rather waste-free
process. Excitingly, we have discovered the effect of substituents
on the directing group that allows us to obtain either olefinated
benzamides or cyclized tetrahydroisoquinolones as products.
Arguably, this would be an exciting example of a C(sp3)-N
reductive elimination of a Rh(III) intermediate.
’ ASSOCIATED CONTENT
Figure 1. Switching the reaction pathway by choice of different
N-OR1 groups.
S
Supporting Information. Experimental procedures and
b
full spectroscopic data for all new compounds. This material is
Scheme 2. Test for the Nature of the Oxidant: Internal vs
External
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
Generous financial support by the NRW Graduate School
of Chemistry (S.R.) and the DFG (IRTG M€unster-Nagoya
and the SFB 858) is gratefully acknowledged. The research
of F.G. has been supported by the Alfried Krupp Prize for
Young University Teachers of the Alfried Krupp von Bohlen
und Halbach Foundation. We thank Dr. Frederic Patureau for
helpful discussions.
Table 2. Tetrahydroisoquinolinone Synthesisa
’ REFERENCES
(1) Recent reviews: (a) The Mizoroki-Heck Reaction; Oestreich, M.,
Ed.; Wiley: Chichester, 2009. (b) Br€ase, S.; de Meijere, A. In Metal-
Catalyzed Cross-Coupling Reactions; de Meijere, A., Diederich, F., Eds.;
Wiley-VCH: New York, 2004; Chapter 5.
(2) Recent reviews on C-H functionalization using transition
metals: (a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110,
624. (c) Xu, L.-M.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712. (d)
Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48,
9792. (e) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2009, 48, 5094. (f) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.;
Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (g) Li, B.-J.; Yang, S.-D.; Shi, Z.-
J. Synlett 2008, 949. (h) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (i)
Satoh, T.; Miura, M. Top. Organomet. Chem. 2008, 24, 61. (j) Alberico,
D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (k) Sun, C.-L.;
Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677.
a Reaction conditions: 4 (1.0 mmol), alkenes 2 (1.5 mmol), [Cp*
RhCl2]2 (2.5 mol %), CsOPiv (30 mol %), PivOH (20 mol %), dry
EtOH (0.2 M), 80 °C, 16 h, Ar atmosphere. Isolated yields are given.
b Run at 60 °C under 5 bar of ethylene pressure.
(3) First report: (a) Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967,
8, 1119. Reviews: (b) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res.
2001, 34, 633. (c) Beccalli, E. M.; Broggini, G.; Martinelli, M.;
Sottocornola, S. Chem. Rev. 2007, 107, 5318.
acid were found to be beneficial, resulting in the selective
formation of 5aa from 4a (Table 2).13 Interestingly, under the
same reaction conditions, substrate 1a leads exclusively to the
formation of the olefinated product 3aa. In addition, when
olefination product 3aa was subjected to these modified reaction
conditions, the starting material remained unchanged after 16 h
(Figure 1). This clearly rules out the intermediacy of 3aa in the
formation of 5aa and might be seen as an additional indication for
the existence of an intermediate A (R1 = Piv).
Finally, we examined the scope of this interesting reaction by
varying both coupling partners (Table 2). The selectivity and
substrate scope for this reaction are good for acrylates and sty-
renes. Interestingly, even in the case of acrylate, the six-mem-
bered product 5an formed. Impressively, treatment of 4a with 5
bar of ethylene gave the desired product (5ao) in excellent yield.
In conclusion, we have developed a novel, regio- and stereo-
selective, synthetically efficient, mild, and broad substrate scope
tolerable olefination reaction by C-H activation. Avoiding
(4) Selected Pd-catalyzed oxidative olefinations: (a) Boele, M. D. K.;
van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.;
van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1586. (b) Zaitsev,
V. G.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 4156. (c) Cai, G.; Fu, Y.;
Li, Y.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 7666. (d) Li, J.-J.;
Mei, T.-S.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 6452. (e) W€urtz, S.;
Rakshit, S.; Neumann, J. J.; Dr€oge, T.; Glorius, F. Angew. Chem., Int. Ed.
2008, 47, 7230. (f) García-Rubia, A.; Arrayꢀas, R. G.; Carretero, J. C.
Angew. Chem., Int. Ed. 2009, 48, 6511. (g) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-
Q. J. Am. Chem. Soc. 2009, 131, 5072. (h) Wang, D.-H.; Engle, K. M.; Shi,
B.-F.; Yu, J.-Q. Science 2010, 327, 315. (i) Schiffner, J. A.; W€oste, T. H.;
Oestreich, M. Eur. J. Org. Chem. 2010, 174. (j) Lu, Y.; Wang, D.-H.;
Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 5916. Mild oxidative
Heck reaction for activated diene olefins, see: (k) Houlden, C. E.; Bailey,
C. D.; Ford, J. G.; Gagnꢀe, M. R.; Lloyd-Jones, G. C.; Booker-Milburn,
K. I. J. Am. Chem. Soc. 2008, 130, 10066.
2352
dx.doi.org/10.1021/ja109676d |J. Am. Chem. Soc. 2011, 133, 2350–2353