Page 11 of 13
CONCLUSIONS
Journal of the American Chemical Society
(6) Richter, M. M. Chem. Rev., 2004, 104, 3003-3036 and
references therein.
1
We have described the synthesis, photophysics,
computational analysis, and electrochemical behavior of
efficient ECL emitting bifunctional dyes consisting of a
fluorene or spirobifluorene core linked to para-
substituted triphenylamines. The compounds were
prepared in good yield, through two different approaches,
by using Suzuki or Hartwig-Buchwald cross-coupling
reaction. All compounds show blue-green emission, with
high quantum yields. ECL spectra almost match those
obtained by photoluminescence, and ECL efficiency is
higher than for the standard ECL emitter 9,10-
diphenylanthracene. The effect of the substituent groups
on the amine moieties allows fine tuning of the emission
properties with a remarkable ꢀλ of 73 (PL) and 67 (ECL)
nm, respectively. Analysis of the results indicates that all
systems are energy-sufficient and ECL emission is caused
by the singlet-excited state obtained by the S-route. This
class of ECL systems have the merits of showing (i)
reversible and stable electrochemical behavior, (ii) very
high PL quantum yields, and (iii) high ECL efficiency
without formation of excimers. The investigated
molecules demonstrate the effective possibility to design
highly emitting systems for ECL applications with tunable
emission wavelength. Concerning possible developments,
we note that although both the fluorene and the
spirobifluorene systems show very nice PL and ECL
behaviors, the spirobifluorene system offers the chance of
introducing suitable electron-withdrawing substituents in
second fluorene moiety. By this strategy, an even more
effective separation of HOMO and LUMO should be
attained, resulting in a further fine-tuned red shift.
(7) Miao, W. Chem. Rev. 2008, 108, 2506-2538 and references
therein.
(8) Sardesai, N. P.; Barron, J. C.; Rusling, J. F. Anal. Chem. 2011,
83, 6698–6703.
2
3
4
5
6
7
8
9
(9) Xu, D.; Adachi, C. Appl. Phys. Lett. 2009, 95, 053304.
(10) Hirata, S.; Kubota, K.; Jung, H. H.; Hirata, O.; Goushi, K.;
Yahiro, M.; Adachi, C. Adv. Mater. 2011, 23, 889-893.
(11) Kasahara, T.; Matsunami, S.; Edura, T.; Ishimatsu, R.;
Oshima, J.; Tsuwaki, M.; Imato, T.; Shoji, S.; Adachi, C.; Mizuno,
J. Sens. Actuat. A 2014, 214, 225-229.
(12) (a) Barbante, G. J. ; Hogan, C. F.; Mechler, A.; Hughes, A.
B. J. Mater. Chem. 2010, 20, 891-899. (b) Filiatrault, H. L.;
Porteous, G. C.; Carmichael, R. S.; Davidson, G J. E.; Carmichael,
T. B. Adv. Funct. Mater. 2012, 24, 2673-2678.
(13) Nepomnyashchii, A. B.; Bard, A. J. Acc. Chem. Res. 2012,
45, 1844-1853.
(14) Qi, H.; Teesdale, J. J.; Pupillo, R. C.; Rosenthal J.; Bard, A.
J. J. Am. Chem. Soc. 2013, 135, 13558-13566.
(15) Ishimatsu, R.; Matsunami, S.; Kasahara, T.; Mizuno, J.;
Edura, T.; Adachi, C.; Nakano, K.; Imato, T. Angew. Chem. Int.
Ed. 2014, 53, 6993-6996.
(16) Fernández-Hernández, J.; Longhi, E.; Cysewski, R.; Polo,
F; Josel, H.-P.; De Cola, L. Anal. Chem. 2016, 88, 4174-4178.
(17) Zanarini, S.; Felici, M.; Valenti, G.; Marcaccio, M.; Prodi,
L.; Bonacchi, S.; Contreras-Carballada, P.; Williams, R. M.;
Feiters, M. C.; Nolte, R. J. M.; De Cola, L.; Paolucci, F. Chem. Eur.
J. 2011, 17, 4640-4647.
(18) Schmittel, M.; Shu, Q.; Cinar, M. E. Dalton Trans. 2012, 41,
6064-6068.
(19) Reid, E. F.; Cook, V. C.; Wilson, D. J. D.; Hogan, C. F.
Chem. Eur. J. 2013, 19, 15907-15917.
(20) Valenti, G.; Rampazzo, E.; Bonacchi, S.; Khajvand, T.;
Juris, R.; Montalti, M.; Marcaccio, M.; Paolucci, F.; Prodi L.
Chem. Commun. 2012, 48, 4187-4189.
(21) Lingling, L.; Hongying, L.; Yuanyuan, S.; Jianrong, Z.; Jun-
Jie, Z. Anal. Chem. 2011, 83, 661-665.
(22) Li, H.; Daniel, J.; Verlhac, J.-B.; Blanchard-Desce, M.;
Sojic, N. Chem. Eur. J. 2016, 22, 12702-12714.
(23) Valenti, G.; Bruno, C.; Rapino, S.; Fiorani, A.; Jackson, E.
A.; Scott, L. T.; Paolucci, F.; Marcaccio, M. J. Phys. Chem. C 2010,
114, 19467-19472.
(24) Kerr, E.; Doeven, E. H.; Barbante, G. J.; Hogan, C. F.;
Bower, D. J.; Donnelly, P. S.; Connell, T. U.; Francis, P. S. Chem.
Sci., 2015, 6, 472-479.
(25) (a) Omer, K. M.; Ku, S.-Y.; Wong, K.-T.; Bard, A. J. J. Am.
Chem. Soc. 2009, 131, 10733-10741; (b) Omer, K. M.; Ku, S.-Y.;
Wong, K.-T.; Bard, A. J. Angew. Chem., Int. Ed. 2009, 48, 9300-
9303; c) Omer, K. M.; Ku, S.-Y.; Cheng, J.-Z.; Chou, S.-H.; Wong,
K.-T.; Bard, A. J. J. Am. Chem. Soc. 2011, 133, 5492-5499.
(26) Swanick, K. N.; Price, J. T.; Jones, N. D.; Ding, Z. J. Org.
Chem. 2012, 77, 5646-5655.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Corresponding Authors.
E-mail: fabio.rizzo@istm.cnr.it
E-mail: federico.polo@cro.it
E-mail: flavio.maran@unipd.it
Acknowledgment. This work was financially supported by
AIRC (FM, Project 12214: Innovative Tools for cancer risk
assessment and early diagnosis – 5 per mille) and FIRB-MIUR
(Project RBAP114AMK: RINAME – Integrated Network for
Nano-Medicine) for financial support.
Supporting Information. Full experimental details on
methods and syntheses, and further photophysical and
electrochemical characterization results. This material is
available free of charge via the Internet at
(27) Natarajan, P.; Schmittel, M. J. Org. Chem. 2013, 78, 10383-
10394.
(28) Adam, C.; Wallabregue, A.; Li, H.; Gouin, J.; Vanel, R.;
Grass, S.; Bosson, J.; Bouffier, L.; Lacour, J.; Sojic, N. Chem. Eur. J.
2015, 21, 19243-19249.
REFERENCES
(1) Electrogenerated Chemiluminescence; Bard, A. J., Ed.;
Marcel Dekker, New York, 2004.
(2) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811,
265−322.
(3) Ludvík, J. J. Solid State Electrochem. 2011, 15, 2065–2081.
(4) Antonello, S.; Maran, F. J. Am. Chem. Soc. 1999, 121, 9668-
9676.
(29) Ketter, J. B.; Wightman, R. M. J. Am. Chem. Soc. 2004,
126, 10183-10189.
(30) (a) Fungo, F.; Wong, K.-T.; Ku, S.-Y.; Hung, Y.-Y.; Bard, A.
J. J. Phys. Chem. B, 2005, 109, 3984-3989. (b) Qi, H.; Chen, Y.-H.;
Cheng, C.-H.; Bard, A. J. J. Am. Chem. Soc. 2013, 135, 9041-9049.
(31) (a) Elangovan, A.; Yang, S.-W.; Lin, J.-H.; Kao, K.-M.; Ho,
T.-I. Org. Biomol. Chem. 2004, 2, 1597-1602; (b) Elangovan, A.;
Lin, J.-H.; Yang, S.-W.; Hsu, H.-Y.; Ho, T.-I. J. Org. Chem. 2004,
(5) Antonello, S.; Hesari, M.; Polo, F.; Maran, F. Nanoscale
2012, 4, 5333-5342.
ACS Paragon Plus Environment