Chromogenic Cation Sensors
Synthesis of L5: In a round-bottomed flask, compound 1 (100 mg,
0.69 mmol) was dissolved in a mixture (5 mL) of acetic acid and
water (5:1 v/v). The crude material was cooled with an ice bath.
Then NaNO2 (47.6 mg, 0.69 mmol) dissolved in water (1.5 mL) was
added. After 10 min, macrocycle 6 (206 mg, 0.63 mmol) dissolved
in HCl/water (5:1 v/v, 5 mL) was added dropwise to the crude reac-
tion mixture. Then the crude mixture was allowed to react for
30 min in an ice bath and for 60 min at room temperature. The
crude reaction mixture was extracted with CH2Cl2 and the organic
phase washed with aqueous NaHCO3 solution. The crude reaction
mixture was purified with column chromatography by employing
aluminium oxide as the stationary phase and CH2Cl2/CH3CN (9:1
v/v) as eluent. The final receptor L5 (145 mg, 0.3 mmol) was iso-
lated as a dark blue solid; yield 48%. 1H NMR (300 MHz, [D6]-
DMSO): δ = 2.76 (t, 4 H, S-CH2-S), 2.93 (t, 4 H, S-CH2-S), 3.63
(s, 4 H, O-CH2-O), 3.80 (m, 8 H, S-CH2-N, O-CH2-O), 6.78 (d, 2
H, C6H4), 7.92 (d, 2 H, C6H4), 8.60 (s, 1 H, thiazole) ppm. 13C{1H}
NMR (75 MHz, CDCl3): δ = 29.6, 31.7, 52.4, 70.8, 74.4, 112.4,
143.5, 144.5, 147.6, 154.7, 182.1 ppm. HRMS calcd. for
C19H25N5O4S3 483.1069; found 483.1075.
Synthesis of L6: In a round-bottomed flask, compound 1 (100 mg,
0.69 mmol) was dissolved in a mixture (5 mL) of acetic acid and
water (5:1 v/v). The crude material was cooled with an ice bath.
Then NaNO2 (47.6 mg, 0.69 mmol) dissolved in water (1.5 mL) was
added. After 10 min, macrocycle 7 (206 mg, 0.63 mmol) dissolved
in HCl/water (5:1 v/v, 5 mL) was added dropwise to the crude reac-
tion mixture. Then the crude mixture was allowed to react for
30 min in an ice bath and for 60 min at room temperature. The
crude reaction mixture was extracted with CH2Cl2 and the organic
phase washed with aqueous NaHCO3 solution. The crude reaction
mixture was purified with column chromatography by employing
aluminium oxide as the stationary phase and CH2Cl2/CH3CN (9:1
v/v) as eluent. The final receptor L6 (121 mg, 0.25 mmol) was iso-
lated as a dark blue solid; yield 40%. 1H NMR (300 MHz, [D6]-
DMSO): δ = 2.80 (t, 4 H, S-CH2-S), 2.91 (t, 4 H, S-CH2-S), 3.73
(s, 4 H, O-CH2-O), 3.87 (m, 8 H, S-CH2-N, O-CH2-O), 6.77 (d, 2
H, C6H4), 7.93 (d, 2 H, C6H4), 8.59 (s, 1 H, thiazole) ppm. 13C{1H}
NMR (75 MHz, CDCl3): δ = 31.8, 33.0, 51.6, 70.5, 72.7, 112.4,
142.7, 143.8, 147.3, 154.7, 182.3 ppm. HRMS calcd. for
C19H25N5O4S3 483.1069; found 483.1057.
CTQ2010-15364, Molecular Nanoscience (Consolider Ingenio
CSD2007-00010) and Generalitat Valenciana (PROMETEO/2009/
016 and PROMETEO/2009/108) is gratefully acknowledged.
[1] a) L. Fabbrizzi, A. Poggi, Chem. Soc. Rev. 1995, 24, 197–202;
b) R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M.
Lynch, G. E. M. Maguire, K. R. A. S. Sandanayake, Chem.
Soc. Rev. 1992, 21, 187–195.
[2] J. P. Dix, F. Vögtle, Angew. Chem. 1978, 90, 893; Angew. Chem.
Int. Ed. Engl. 1978, 17, 857–859.
[3] a) R. Martínez-Máñez, F. Sancenón, Chem. Rev. 2003, 103,
4419–4476; b) P. D. Beer, P. A. Gale, Angew. Chem. 2001, 113,
502; Angew. Chem. Int. Ed. 2001, 40, 486–516.
[4] a) B. Valeur, I. Leray, Coord. Chem. Rev. 2000, 205, 3–40; b)
A. W. Czarnik, Acc. Chem. Res. 1994, 27, 302–308; c) K. Rur-
ack, U. Resch-Genger, Chem. Soc. Rev. 2002, 31, 116–127.
[5] a) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson,
A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice,
Chem. Rev. 1997, 97, 1515–1566; b) K. Rurack, Spectrochim.
Acta Part A 2001, 57, 2161–2195.
[6] a) H. G. Löhr, F. Vögtle, Acc. Chem. Res. 1985, 18, 65–72; b)
M. Takagi, K. Ueno, Top. Curr. Chem. 1984, 121, 39–65.
[7] See, for example: a) J. V. Ros-Lis, R. Martínez-Máñez, F. San-
cenón, J. Soto, K. Rurack, H. Weißhoff, Eur. J. Org. Chem.
2007, 2449–2458; b) Y.-J. Chen, W.-S. Chung, Eur. J. Org.
Chem. 2009, 4770–4776; c) H. G. Lee, J.-E. Lee, K. S. Choi,
Inorg. Chem. Commun. 2006, 9, 582–585; d) P. Mahato, A.
Ghosh, S. Saha, S. Mishra, S. K. Mishra, A. Das, Inorg. Chem.
2010, 49, 11485–11492.
[8] a) H. R. Hovind, Analyst 1975, 100, 769–796; b) V. A. Lemos,
E. S. Santos, M. S. Santos, R. T. Yamaki, Microchim. Acta
2007, 158, 189–204.
[9] a) M. M. Saeed, S. Z. Bajwa, M. S. Ansari, R. Ahmed, Ra-
diochim. Acta 2005, 93, 177–185; b) A. M. Starvin, P. T. Rao,
J. Hazard. Mater. 2004, 113, 75–79.
[10] a) M. Wang, J.-M. Lin, F. Qu, X. Shan, Z. Chen, J. Cromato-
graph. A 2004, 1029, 249–254; b) I. Takase, A. S. Luna, R.
Calixto de Campos, Talanta 2003, 61, 597–602; c) A. S. Amin,
Anal. Lett. 2001, 34, 163–176.
[11] a) M. Moragues, R. Martínez-Máñez, F. Sancenón, Chem. Soc.
Rev. 2011, 40, 2593–2643; b) R. Martínez-Máñez, F. Sancenón,
M. Hecht, M. Biyical, K. Rurack, Anal. Bioanal. Chem. 2011,
399, 55–74; c) R. Martínez-Máñez, J. Soto, J. M. Lloris, T.
Pardo, Trends Inorg. Chem. 1998, 5, 183–203.
[12] J. P. Dix, F. Vögtle, Angew. Chem. 1978, 90, 893–894.
[13] a) J. E. Richman, T. J. Atkins, J. Am. Chem. Soc. 1974, 96,
2268–2270; b) T. J. Atkins, J. E. Richman, W. F. Oettle, Org.
Synth. 1978, 58, 86–95; c) K. E. Krakowiak, J. S. Bradshaw,
D. J. Zamecka-Krakowiak, Chem. Rev. 1989, 89, 929–972.
[14] a) K. Higashino, T. Nakaya, E. Ishiguro, J. Photochem. Pho-
tobiol. A: Chem. 1994, 79, 81–88; b) H. Mustroph, J. Epperlein,
Z. Chem. 1983, 23, 298–299.
[15] J. V. Ros-Lis, R. Martínez-Máñez, F. Sancenón, J. Soto, M.
Spieles, K. Rurack, Chem. Eur. J. 2008, 14, 10101–10114.
[16] a) L. Forlani, P. De Maria, A. Fini, J. Chem. Soc. Perkin Trans.
2 1980, 1156–1158; b) P. Haake, L. P. Bausher, J. Phys. Chem.
1968, 72, 2213–2217.
[17] a) E. Sawicki, J. Org. Chem. 1957, 22, 365–367; b) O. Siiman,
A. Lepp, J. Phys. Chem. 1984, 88, 2641–2650; c) H. Wada, O.
Nakazawa, G. Nakagawa, Talanta 1974, 21, 97–102; d) I. I.
Pogoida, P. P. Kish, Org. Reakt. Anal. 1976, 2, 102–104.
[18] Critical Stability Cosntants (Eds.: R. M. Smith, A. E. Martell),
Plenum, New York, Vol. 2, 1974.
[19] B. García-Acosta, R. Martínez-Máñez, F. Sancenón, J. Soto,
K. Rurack, M. Spieles, E. García-Breijo, L. Gil, Inorg. Chem.
2007, 46, 3123–3135.
Computational Details: Calculations were performed with the
Gaussian 09 package using the B3LYP functional and the qua-
dratic convergence approach.[25] Double-ζ all-electron basis sets
proposed by Ahlrichs et al. were used for all atoms except for the
mercury atom, for which valence double-ζ proposed by Dunning
and Huzinaga and Los Alamos electron core pseudopotential were
used.[26] Molecular geometries were optimized for the used mole-
cules. To optimize the computational time, the organic skeleton
involved in the studied charge-transfer band – formed by aniline,
azo and thiazole groups – was frozen in metallic complexes. Ener-
gies and oscillator strengths of the electronic transitions were ob-
tained from calculations based on the time-dependent formal-
ism.[27] In such cases, a polarizable continuum model (PCM) with
the parameters that correspond to the acetonitrile was used to sim-
ulate the electronic effects of the solvent.[28]
Supporting Information (see footnote on the first page of this arti-
1
cle): H NMR and UV/Vis titrations.
Acknowledgments
[20] HyperChem. 6.03 Molecular Modeling System, Hypercube Inc,
Gainesville, Florida, USA, 2000.
[21] See, for example: a) K. Tsubaki, D. Tanima, Y. Kuroda, K.
Fuji, T. Kawabata, Org. Lett. 2006, 8, 5797–5800; b) H. J. Kim,
Financial support by the Spanish Ministerio de Ciencia e Innova-
ción (MICINN) through projects MAT2009-14564-C04-01,
Eur. J. Inorg. Chem. 2012, 76–84
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
83