810
E. Faoro et al. / Journal of Organometallic Chemistry 696 (2011) 807e812
Fig. 4. Pseudo-dimeric assembling of [dmpTeBr2(CH2eC(O)eCH3)] (4), Hydrogen
atoms have been omitted for clarity. Dashed lines represent secondary interactions.
0
ꢀ
Symmetry code: ( ) ¼ 1 ꢁ x, y, 1.5 ꢁ z. Selected bond lengths [A] and angles [deg]:
Te1eBr1 2.7202(6), Te1eBr2 2.6468(6), Te1eC11 2.101(4), Te1eC1 2.135(5), C1eC2
1.510(6), O1eC2 1.212(5), C2eC3 1.474(7), O12eC16 1.368(5), O12eC18 1.431(6),
O11eC12 1.350(6), O11eC17 1.427(5), Te1/O1 2.8990(3), Te1/O11 3.3459(3),
Te1/O12 2.8224(4), Te1/ Br20 3.8086(4); C11eTe1eC1 101.94(17), C11eTe1eBr2
88.31(11), C1eTe1eBr2 89.42(13),C11eTe1eBr1 89.50(11), C1eTe1eBr1 87.07(14),
Br2eTe1eBr1 175.393(18), C2eC1eTe1 106.5(3), O1eC2eC3 123.5(4), O1eC2eC1 119.9
(4), C3eC2eC1 116.6(4), C11eTe1/ Br20 138.68(0), C1eTe1/O12 153.42(1).
Fig. 2. Molecular structure of [RTeTeBr2R] (2). Hydrogen atoms have been omitted for
clarity. Dashed lines represent secondary interactions. Selected bond lengths [A] and
ꢀ
angles [deg]: Te1eBr1 2.6878(3), Te1eBr2 2.7424(3), Te2eTe1 2.7401(2), Te1eC11
2.103(2), Te2eC21 2.103(2), C26eO22 1.368(3), C22eO21 1.363(3), C18eO12 1.433(3),
O11eC12 1.362(3), O11eC17 1.437(3), O12eC16 1.355(3), O22eC28 1.430(3), O21eC27
1.425(3), Te1/O11 2.880(2), Te1/O22 2.937(2), Te2/O12 2.854(0), Te2/O21 2.929
(3); C11eTe1eBr1 88.82(6), C11eTe1eTe2 99.41(6), Br1eTe1eTe2 97.548(8),
C11eTe1eBr2 89.32(6), C21eTe2eTe1 95.70(6), Br1eTe1eBr2 169.747(9),
Te2eTe1eBr2 92.703(8),O22eC26eC21 115.44(19), O21eC22eC21 114.5(2).
the Te/O distances are 3.1638(2) (Te1/O11), 3.0938(2) (Te1/O12)
the solid state. As examples of the influence of the size of the substit-
uent on the stabilization of such intermediary, we have reported the
tetrameric structure of PhTeI [13], while the use of a very bulky R
allowed the isolation of Mes*TeI (Mes* ¼ 2,4,6-tri-tert-butylphenyl),
which exhibits discrete molecules, although in the solid state also
ꢀ
and 3.5022(2) A (Te1/O21). The sum of the Te/O van der Waals radii is
II
IV
ꢀ
3.58 A [9], and in the mixed-valent {Te /Te } complex [RTeTe(Br)2R]
(2) these interactions are comparatively stronger, measuring 2.880(2)
ꢀ
(Te1/O11), 2.854(0) (Te2/O12) and 2.937(2) A (Te1/O22) (see
ꢀ
Fig. 2). Complex 2 represents the first compound of this series which
reproduces partially the organyltellurenyl iodide chemistry: the
mixed-valent complex [RTeTe(I)2R] (R ¼ dmp) was first obtained by
stirring (dmpTe)2 with iodine (1:1) in CH2Cl2 for 2 h at ꢁ10 ꢀC with
further crystallization at ꢁ18 ꢀC [6]. The Te/O(methoxy) contacts
present in the title compounds are also able to support a given struc-
ture, as in the case of complex 3, [dmpTeBr3]: Fig. 3 shows that the
pseudo octahedral configuration of 3 is only possible because of the
shortening of the Te1/O11 contact (2.812(0)), simultaneously with
the elongation of the (in the same plane lying) Te1/O12 distance
presents Te/I (3.727) and I/I (3.818 A) intermolecular contacts [14].
As expected, in the course of the reactions described in this work, the
stabilization of dmpTeX (X ¼ Cl, Br) has occurred through different
routes, driven by the substituent dmp, the stoichiometry and the
reactivityof Cl and Br. With exception of the starting reagent 1, inallthe
title complexes the tellurium centers interact in a relatively strong
manner with the oxygen atoms of the two methoxyphenyl groups.
Wada et al. [15,16] have discussed this kind of interactions, including
the dependence of the rotational barrier of the Ar-group. In (RTe)2 (1)
ꢀ
(3.2983(3) A). This effort, to keep O11 in the same plane that Br1, Br2
and Br3 in as much as possible, is also visible in the distortion of the
Fig. 5. Polymeric association of the molecules [RTeTeCl2R] (5). Dashed lines represent
secondary bonds. Hydrogen atoms have been omitted for clarity. Symmetry code:
0
00
ꢀ
Fig. 3. Polymeric assembling of [dmpTeBr3]n (3). Hydrogen atoms have been omitted
for clarity. Dashed lines represent secondary interactions. Symmetry code: (0) 0.5 þ x, y,
( ) ¼ x, 1 þ y, z; ( ) ¼ x, ꢁ1 þ y, z. Selected bond lengths [A] and angles [deg]: Te1eC11
2.1064(17), Te1eCl1 2.4914(5), Te1eCl2 2.5889(5), Te1eTe2 2.74208(17), Te2eC21
2.1089(18), O21eC22 1.361(2), O22eC26 1.367(2), Te1/O11 2.9271(15), Te1/O12
3.2451(12), Te1/O22 2.9266(13), Te2/O12 2.8201(14), Te2/O21 2.9882(16),
Te2/O22 3.1834(12), Cl2/ Te20 3.7837(5); C11eTe1eCl1 88.63(5), C11eTe1eCl2 87.45
(5), Cl1eTe1eCl2 173.356(18), C11eTe1eTe2 99.83(5), Cl1eTe1eTe2 94.338(14),
00
ꢀ
1.5 ꢁ z; ( ) ¼ ꢁ0.5 þ x, y, 1.5 ꢁ z. Selected bond lengths [A] and angles [deg]: Br2eTe1
2.6896(13), Br1eTe1 2.6322(13), Br3eTe1 2.429(2), C11eTe1 2.109(9), O11eC12 1.362
(11), O12eC16 1.380(13), Te1/O11 2.812(0), Te1/O12 3.2983(3), Te1/ Br20 3.473(0),
Br2/ Te100 3.473(0); Br3eTe1eBr1 94.20(7), Br3eTe1eBr2 83.09(6), Br1eTe1eBr2
175.18(4), C11eTe1eBr1 88.3(3), C11eTe1eBr2 88.3(3), C11eTe1eBr3 100.9(3),
C16eC11eTe1 128.1(8), C12eC11eTe1 111.0(7), C12eO11eC17 119.2(8), C16eO12eC18
118.3(8), C11eTe1/ Br20 169.53(0), Br3eTe1/O11 149.95(0).
Cl2eTe1eTe2
91.616(12),C21eTe2eTe1 95.65(5),
C22eO21eC27
118.03(16),
C12eO11eC17 118.30(15), Te1eCl2/ Te20 121.01(2), Te2eTe1/O11 150.59(3),
C11eTe1/O22 159.90(6), Te1eTe2/O21 134.39(3), C21eTe2/O12 166.90(6).