ORGANIC
LETTERS
2011
Vol. 13, No. 6
1447–1449
Novel Aerobic Oxidation of Primary
Sulfones to Carboxylic Acids
Amy C. Bonaparte, Matthew P. Betush, Bettina M. Panseri, Daniel J. Mastarone,
Ryan K. Murphy, and S. Shaun Murphree*
Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335,
United States
Received January 17, 2011
ABSTRACT
Primary alkyl aryl sulfones are converted to the corresponding carboxylic acids in fair to excellent yield through double deprotonation and
exposure to atmospheric oxygen. The methodology allows for the convenient synthesis of 13C labeled carboxylic acids.
Carboxylic acids are widely distributed in nature, and
they find broad importance as food components,1
pharmacophores,2 and synthetic precursors.3 As a conse-
quence, the preparation of carboxylic acids occupies a
place of particular importance in organic chemistry.4
Conventional synthetic routes include the oxidation of
primary alcohols5 and aldehydes;6 the hydrolysis of acyl
derivatives, such as acyl halides,7 anhydrides,8 esters,9 and
amides;10 and the addition of Grignard reagents11 or
transition metal complexes12 to carbon dioxide. Despite
the many existing methods, innovations continue to be
reported, ranging from the aqueous aerobic oxidation of
aldehydes13 to electrocatalytic carboxylation of aliphatic
halides.14
In our ongoing studies of sulfone-mediated furan synth-
esis, we require the conversion of the phenylsulfonylmethyl
furan 1 to the corresponding furoic acid 2. We originally
envisioned using one of the literature methods for oxidizing
the sulfonyl anion derived from 1 to introduce the desired
carbonyl group. In the event, however, treatment of the
anion of 1 with bis-(trimethylsilyl)peroxide,15 tert-butyl
trimethylsilylperoxide,16 and chlorodimethoxyborane17
resulted in disappointingly low conversions (<10%).
Other methods of oxidative desulfonylation have been
ꢀ
(1) Velioglu, Y. S. Food Acids: Organic Acids, Volatile Organic
Acids, and Phenolic Acids. In Advances in Food Biochemistry; Yildiz,
F., Ed.; CRC Press: Boca Raton, FL, 2010; p 313.
(2) Kalgutkar, A. S.; Daniels, J. S. Carboxylic acids and their
bioisosteres. In Metabolism, Pharmacokinetics and Toxicity of Func-
tional Groups; Smith, D. A., Ed.; RSC Publishing: Cambridge, 2010; p 99.
(3) Riemenschneider, W. Carboxylic Acids, Aliphatic. Ullmann’s
Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2002.
(4) (a) Bew, S. P. Carboxylic acids. In Comprehensive Organic Func-
tional Group Transformations II; Katritzky, A. R., Taylor, R. J. K., Eds.
Elsevier: Oxford, 2005; p 19. (b) Franklin, A. S. J. Chem. Soc., Perkin
Trans. 1 1999, 3537. (c) Ogliaruso, M. A.; Wolfe, J. F. Synthesis of
carboxylic acids, esters, and their derivatives; Patai, S., Rappoport, Z., Eds.;
Wiley: New York, 1991.
(5) (a) Zhao, M.; Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.;
Grabowski, E. J. J.; Reider, P. J. Tetrahedron Lett. 1998, 39, 5323. (b)
Lifshitz, E.; Goldfarb, D.; Vega, S.; Luz, Z.; Zimmermann, H. J. Am.
Chem. Soc. 1987, 109, 7280. (c) Newman, M. S.; Arkell, A.; Fukunaga,
T. J. Am. Chem. Soc. 1960, 82, 2498.
(6) (a) Raach, A.; Reiser, O. J. Prakt. Chem. 2000, 342, 605. (b)
Tabuchi, H.; Hamamoto, T.; Miki, S.; Tejima, T.; Ichichara, A. J. Org.
Chem. 1994, 59, 4749. (c) Dalcanale, E.; Montanari, F. J. Org. Chem.
1986, 51, 567.
(7) Bender, M. L.; Chen, M. C. J. Am. Chem. Soc. 1963, 85, 30.
(8) Satchell, D. P. N.; Wassef, W. N.; Bhatti, Z. A. J. Chem. Soc.,
Perkin Trans. 2 1993, 2373.
(11) Sattler, A.; Haufe, G. Tetrahedron 1996, 52, 5469.
(12) (a) Correa, A.; Martın, R. J. Am. Chem. Soc. 2009, 131, 15974.
(b) Shimizu, K.; Takimoto, M.; Sato, Y.; Mori, M. Org. Lett. 2005, 7,
195.
(13) Shapiro, N.; Vigalok, A. Angew. Chem. 2008, 120, 2891.
(14) Niu, D.-F.; Xiao, L.-P.; Zhang, A.-J.; Zhang, G.-R.; Tan, Q.-Y.;
Lu, J.-X. Tetrahedron 2008, 64, 10517.
(15) (a) Hwu, J. R.; Tsay, S.-C.; King, K. Y.; Horng, D.-N. Pure
Appl. Chem. 1999, 71, 445. (b) Hwu, J. R.; Hwu, J. R.; Tsay, S. C. Chem.
Commun. 1998, 161. (c) Romo, D.; Johnson, D. D.; Plamondon, L.;
Miwa, T.; Schreiber, S. L. J. Org. Chem. 1992, 57, 5060. (d) Hwu, J. R. J.
Org. Chem. 1983, 48, 4432.
(16) Chemla, F.; Julia, M.; Uguen, D. Bull. Soc. Chim Fr. 1993, 136,
547.
(17) Baudin, J. B.; Julia, M.; Rolando, C. Tetrahedron Lett. 1985, 26,
2333.
(9) Krief, A.; Kremer, A. Chem. Rev. 2010, 110, 4772.
(10) Bagno, A.; Lovato, G.; Scorrano, G. J. J. Chem. Soc., Perkin
Trans. 2 1993, 1091.
r
10.1021/ol200135m
2011 American Chemical Society
Published on Web 02/14/2011