Journal of the American Chemical Society
COMMUNICATION
by utilizing their peculiar reactivities provided unprecedented
regulation of the optical properties. The results obtained here
promise versatile applications using this off/on switching ability
by interconversion between the hypercoordinate silicon compounds.
’ ASSOCIATED CONTENT
S
Supporting Information. Crystallographic data (CIF),
b
synthetic procedures, and spectral data. This material is available
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This research was financially supported by Grants-in-Aid for
Scientific Research from the Ministry of Education, Culture,
Sports, Science, and Technology of Japan.
’ REFERENCES
(1) Wood, T. E.; Thompson, A. Chem. Rev. 2007, 107, 1831.
(2) (a) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891. (b)
Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem., Int. Ed. 2008,
47, 1184.
Figure 2. Crystal structure of 32-O: (a) top view; (b) side view.
Thermal ellipsoids are displayed at the 50% level. Colors: C, gray; N,
blue; O, red; Si, green. Hydrogen atoms have been omitted for clarity.
(3) Sazanovich, I. V.; Kirmaier, C.; Hindin, E.; Yu, L.; Bocian, D. F.;
Lindsey, J. S.; Holten, D. J. Am. Chem. Soc. 2004, 126, 2664.
(4) (a) Halper, S. R.; Malachowski, M. R.; Delaney, H. M.; Cohen,
S. M. Inorg. Chem. 2004, 43, 1242. (b) Halper, S. R.; Cohen, S. M. Angew.
Chem., Int. Ed. 2004, 43, 2385.
(5) Stork, J. R.; Thoi, V. S.; Cohen, S. M. Inorg. Chem. 2007,
46, 11213.
(6) Kobayashi, J.; Kushida, T.; Kawashima, T. J. Am. Chem. Soc.
2009, 131, 10836.
(7) Kyushin, S.; Ikarugi, M.; Goto, M.; Hiratsuka, H.; Matsumoto, H.
Organometallics 1996, 15, 1067.
(8) (a) Holmes, R. R. Chem. Rev. 1990, 90, 17. (b) Chuit, C.; Corriu,
R. J. P.; Reye, C.; Young, J. C. Chem. Rev. 1993, 93, 1371. (c) Holmes,
R. R. Chem. Rev. 1996, 96, 927.
(9) Tacke, R.; Burschka, C.; Richter, I.; Wagner, B.; Willeke, R. J. Am.
Chem. Soc. 2000, 122, 8480.
(10) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2000,
122, 6793.
(11) (a) Kim, H.; Burghart, A.; Welch, M. B.; Reibenspies, J.;
Burgess, K. Chem. Commun. 1999, 1889. (b) Ikeda, C.; Ueda, S.;
Nabeshima, T. Chem. Commun. 2009, 2544.
(12) Crystal data for 4-Ph: C33H22N2O2Si, M = 506.62; triclinic;
a = 10.0066(5) Å, b = 11.3661(6) Å, c = 12.8556(9) Å, R = 62.181(2)°,
β = 77.287(2)°, γ = 70.1211(14)°; U = 1212.79(12) Å3; T = 120(2) K;
space group P1 (No. 2); Z = 2; 12001 reflns measured, 5484 unique
(Rint = 0.0395); R1 = 0.0627 [I > 2σ(I)], wR2 = 0.1564 (all data),
GOF(F2) = 1.101.
(13) Sheldrick, G. M. SHELXL 97: Program for Crystal Structure
Refinement; University of G€ottingen, G€ottingen, Germany, 1997.
(14) The pentacoordination characters %TBPa and %TBPe were
determined as 95.3 and 99.7%, respectively, indicating a nearly ideal TBP
structure for 4-Ph. See: Tamao, K.; Hayashi, T.; Ito, Y. Organometallics
1992, 11, 2099.
Figure 3. (a) Absorption and (b) fluorescence spectra of 3-OH (solid
line) and 32-O (dashed line) in CHCl3. The samples were excited at
605 nm (3-OH), 573 nm (32-O, blue line), and 601 nm (32-O, red line).
(c, d) Photographs of 3-OH (left) and 32-O (right) were taken under
(c) ambient light and (d) UV light (365 nm).
the basis of the unique reactivities of the hypercoordinate
dipyrrinÀsilicon complexes.
(15) Berry, R. S. J. Chem. Phys. 1960, 32, 933.
In conclusion, the first synthesis of hypercoordinate silicon
complexes with N2O2-type dipyrrins, red/NIR-fluorescent sili-
con analogues of BODIPY, has been accomplished. Structural
interconversion between the pentacoordinate silanol and siloxane
(16) Crystal data for 32-O: C60H46N4O5Si2, M = 959.20; triclinic;
a = 10.6926(12) Å, b = 10.9105(9) Å, c = 11.2603(12) Å, R = 65.661(2)°,
β = 76.871(3)°, γ = 87.781(3)°; U = 1161.2(2) Å3; T = 120(2) K;
space group P1 (No. 2); Z = 1,; 11621 reflns measured, 5296 unique
4728
dx.doi.org/10.1021/ja2001924 |J. Am. Chem. Soc. 2011, 133, 4726–4729