Please do not adjust margins
ChemComm
Page 3 of 4
DOI: 10.1039/C7CC00410A
Journal Name
COMMUNICATION
butylated hydroxytoluene (BHT) into the reaction system, no pyridyl enamines were used as the substrates. The reactions
desired product could be observed in both cases (Scheme 3c).
proceed in high efficiency and good functional group tolerance
by using KI as the electrolyte under external oxidant-free
conditions. Mechanistically, KI not only acts as the electrolyte
but also participates in the redox processes of the oxidative
annulation.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21390402, 21520102003), the Ministry of
Science and Technology of China (2012YQ120060), the
Fundamental Research Funds for the Central Universities and
the Program of Introducing Talents of Discipline to Universities
of China (111 Program)
Scheme 3. Mechanistic experiments.
Notes and references
Based on the above experimental results and previous
reports,6 a plausible mechanism was put forward in Scheme 4.
In the first step, hyperiodide intermediate (I+) can be
generated from iodide ion through twice anodic oxidation.
Then N-aryl enamine 1a reacts with in situ generated I+ to form
an N-iodo intermediate. Homolysis of the N-I bond will initiate
the cyclization process. Intramolecular radical addition,
oxidation and deprotonation lead to the formation of indole
2a. Meanwhile, the generated iodine radical can be either
oxidized by anode to regenerate the hyperiodide intermediate.
At the same time, concomitant cathodic reduction of water
releases hydrogen gas during the reaction.
1. (a) S. Mohana Roopan, S. M. Patil and J. Palaniraja, Res. Chem.
Intermediat, 2016, 42, 2749; (b) M. Shiri, Chem. Rev., 2012,
112, 3508; (c) A. J. Kochanowska-Karamyan and M. T. Hamann,
Chem. Rev., 2010, 110, 4489.
2. (a) S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105, 2873; (b) G.
R. Humphrey and J. T. Kuethe, Chem. Rev., 2006, 106, 2875.
3. Z. Shi and F. Glorius, Angew. Chem. Int. Ed., 2012, 51, 9220.
4. (a) S. Würtz, S. Rakshit, J. J. Neumann, T. Dröge and F. Glorius,
Angew. Chem. Int. Ed., 2008, 47, 7230; (b) Z.-H. Guan, Z.-Y.
Yan, Z.-H. Ren, X.-Y. Liu and Y.-M. Liang, Chem. Commun.,
2010, 46, 2823; (c) J. J. Neumann, S. Rakshit, T. Dröge, S. Würtz
and F. Glorius, Chem. Eur. J., 2011, 17, 7298.
5. (a) W. Yu, Y. Du and K. Zhao, Org. Lett., 2009, 11, 2417; (b) J.
Liu, W. Wei, T. Zhao, X. Liu, J. Wu, W. Yu and J. Chang, J. Org.
Chem., 2016, 81, 9326.
6. Z. He, W. Liu and Z. Li, Chem. Asian. J, 2011, 6, 1340.
7. (a) R. Bernini, G. Fabrizi, A. Sferrazza and S. Cacchi, Angew.
Chem. Int. Ed., 2009, 48, 8078; (b) J. Zoller, D. C. Fabry, M. A.
Ronge and M. Rueping, Angew. Chem. Int. Ed., 2014, 53,
13264.
8. C.-J. Wu, Q.-Y. Meng, T. Lei, J.-J. Zhong, W.-Q. Liu, L.-M. Zhao,
Z.-J. Li, B. Chen, C.-H. Tung and L.-Z. Wu, ACS Catal., 2016, 6,
4635.
9. (a) J.-i. Yoshida, K. Kataoka, R. Horcajada and A. Nagaki, Chem.
Rev., 2008, 108, 2265; (b) J. B. Sperry and D. L. Wright, Chem.
Soc. Rev., 2006, 35, 605; (c) A. Badalyan and S. S. Stahl, Nature,
2016, 535, 406; (d) E. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K.
Chen, M. D. Eastgate and P. S. Baran, Nature, 2016, 533, 77.
10. (a) C. Amatore, C. Cammoun and A. Jutand, Adv. Synth. Catal.,
2007, 349, 292; (b) A. Kirste, G. Schnakenburg, F. Stecker, A.
Fischer and S. R. Waldvogel, Angew. Chem. Int. Ed., 2010, 49,
971; (c) A. Kirste, B. Elsler, G. Schnakenburg and S. R.
Waldvogel, J. Am. Chem. Soc., 2012, 134, 3571; (d) T. Morofuji,
A. Shimizu and J.-i. Yoshida, Angew. Chem. Int. Ed., 2012, 51,
7259; (e) B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke and
S. R. Waldvogel, Angew. Chem. Int. Ed., 2014, 53, 5210; (f) Z.-
W. Hou, Z.-Y. Mao, H.-B. Zhao, Y. Y. Melcamu, X. Lu, J. Song and
H.-C. Xu, Angew. Chem. Int. Ed., 2016, 55, 9168; (g) S. Lips, A.
Wiebe, B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke and S.
R. Waldvogel, Angew. Chem. Int. Ed., 2016, 55, 10872.
11. (a) R. Francke, Beilstein J. Org. Chem., 2014, 10, 2858; (b) R.
Francke and R. D. Little, Chem. Soc. Rev., 2014, 43, 2492; (c) Y.
Scheme 4. Proposed mechanism.
Conclusions
In
conclusion,
an
electrocatalytic
intramolecular
dehydrogenative annulation of N-aryl enamines was
developed for the first time. It provided an environmentally
friendly way for the synthesis of indoles. Moreover,
imidazo[1,2‑a]pyridines could also be produced when N-
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins