JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
5 A. Arbaoui, C. Redshaw, Polym. Chem. 2010, 1, 801.
antiretroviral therapy medicine. AZT is an amphiphilic com-
pound and tends to partition between the lipid bilayers and
the aqueous milieu of liposomes, thus resulting in a low
drug entrapment and significant drug leakage from the
vesicles over time. Modifying the molecular structure may
improve the stability and extend the half-life of the human
body.64,65 The successful formation of the drug–polymer con-
6 M. A. Woodruff, D. W. Hutmacher, Prog. Polym. Sci. 2010,
35, 1217.
7 J. W. Rhim, H. M. Park, C. S. Ha, Prog. Polym. Sci. 2013, 38,
1629.
8 C. M. Thomas, Chem. Soc. Rev. 2010, 39, 165.
9 C. M. Thomas, J. F. Lutz, Angew. Chem. Int. Ed. 2011, 50,
9244.
1
jugates could be confirmed by H NMR (Fig. S19 in support-
10 J. B. Zhu, E. Y. Chen, J. Am. Chem. Soc. 2015, 137, 12506.
11 L. S. Nair, C. T. Laurencin, Prog. Polym. Sci. 2007, 32, 762.
12 R. A. Gross, B. Kalra, Science 2002, 297, 803.
ing information). The resulting conjugates were capped with
the hydroxyl group at one end and the AZT group at the
other end. This result indicated that the presence of drug
did not interfere with the CL/LA random copolymerization,
enabling the preparation of drug–polymer conjugates with
tuned properties.
13 B. Jeong, Y. H. Bae, D. S. Lee, S. W. Kim, Nature 1997, 388,
860.
14 R. Langer, D. A. Tirrell, Nature 2004, 428, 487.
15 G. Li, M. Lamberti, D. Pappalardo, C. Pellecchia, Macromole-
cules 2012, 45, 8614.
CONCLUSIONS
16 L. E. Chile, P. Mehrkhodavandi, S. G. Hatzikiriakos, Macro-
molecules 2016, 49, 909.
We developed
a
series of novel Al complexes
[ArN@CHAC10H7C6H5O]Al(CH3)2
(3a,
Ar 5 C6F5;
3b,
17 K. J. Z. Y. Q. Shen, Z. Q. Shen, K. M. Yao, J. Polym. Sci. A:
Polym. Chem. 1996, 34, 1799.
Ar 5 C6H5; 3c, Ar 5 2,6-iPr2C6H3) that could catalyze the ran-
dom copolymerization of E-CL and L-LA by rationally design-
18 W. A. Ma, Z. X. Wang, Dalton Trans. 2011, 40, 1778.
ing
a modified b-ketiminato ligand with bulky steric
19 M. S. Weimer, B. Hu, S. J. Kraft, R. G. Gordon, C. U. Segre,
A. S. Hock, Organometallics 2016, 35, 1202.
hindrance. Introducing an aryl group at the ortho position in
the benzene ring significantly reduced the gap between the
reactivity of LA and CL in the polymerization, allowing to
synthesize random CL and LA copolymer. The transesterifca-
tion side reaction and the polymer composition could be
adjusted by modulating the electronic and steric effects of
the ligand. Especially, compound 3c could produce quasi-
random copolymer with similar average lengths of the cap-
royl and lactidyl sequences (LCL 5 2.34; LLA 5 2.44). The ran-
dom copolymerization could be further confirmed by the
values of the reactivity of the two monomers (rLA 5 1.31;
20 Z. Dai, Y. Sun, J. Xiong, X. Pan, N. Tang, J. Wu, Catal. Sci.
Technol. 2016, 6, 515.
21 H. W. Ou, K. H. Lo, W. T. Du, W. Y. Lu, W. J. Chuang, B. H.
Huang, H. Y. Chen, C. C. Lin, Inorg. Chem. 2016, 55, 1423.
22 C. Chen, Y. Cui, X. Mao, X. Pan, J. Wu, Macromolecules
2017, 50, 83.
23 B. B. Wu, L. L. Tian, Z. X. Wang, RSC Adv. 2017, 7, 24055.
24 K. D. Pressing, J. H. Lehr, M. E. Pratt, L. N. Dawe, A. A.
Sarjeant, C. M. Kozak, Dalton Trans. 2015, 44, 12365.
ꢀ
25 A. Garces, S. L. F. Barba, F. J. Baeza, A. Otero, L. A.
ꢀ
ꢀ
Sanchez, A. M. Rodrıguez, Organometallics 2017, 36, 884.
rCL 5 0.99). Futhermore, the thermal charaterization of the
26 Y. Wang, B. Liu, X. Wang, W. Zhao, D. Liu, X. Liu, D. Cui,
Polym. Chem. 2014, 5, 4580.
copolymers also indicated amorphous materials whose Tg
were modifiable in the range of 260 and 80 8C by adjusting
the relative content of L-LA and CL. A drug-random copoly-
mer conjugates could be easily prepared by using 3c,which
made these catalysts possess potential applications in bio-
medical field.
27 P. McKeown, M. G. Davidson, G. Kociok-Kohn, M. D. Jones,
Chem. Commun. 2016, 52, 10431.
28 A. Pilone, K. Press, I. Goldberg, M. Kol, M. Mazzeo, M.
Lamberti, J. Am. Chem. Soc. 2014, 136, 2940.
29 S. Tabthong, T. Nanok, P. Sumrit, P. Kongsaeree, S.
Prabpai, P. Chuawong, P. Hormnirun, Macromolecules 2015,
48, 6846.
30 J. Wei, M. N. Riffel, P. L. Diaconescu, Macromolecules 2017,
50, 1847.
ACKNOWLEDGMENT
31 K. Press, I. Goldberg, M. Kol, Angew. Chem. Int. Ed. 2015,
54, 14858.
The authors are grateful for financial support by the National
Natural Science Foundation of China (21474100).
32 Y. Wang, H. Ma, Chem. Commun. 2012, 48, 6729.
33 W. Zhao, Y. Wang, X. Liu, X. Chen, D. Cui, E. Y. Chen,
Chem. Commun. 2012, 48, 6375.
REFERENCES AND NOTES
34 M. G. Cushion, P. Mountford, Chem. Commun. 2011, 47, 2276.
35 M. Bouyahyi, R. Duchateau, Macromolecules 2014, 47, 517.
1 A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek,
J. Cairney, C. A. Eckert, W. J. J. Frederick, J. P. Hallett, D. J.
Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T.
Tschaplinski, Science 2006, 311, 484.
36 N. Romero, Q. Dufrois, L. Vendier, C. Dinoi, M. Etienne,
Organometallics 2017, 36, 564.
37 S. Abbina, G. Du, ACS Macro Lett. 2014, 3, 689.
2 C. Bakewell, A. J. White, N. J. Long, C. K. Williams, Angew.
Chem. Int. Ed. Engl. 2014, 53, 9226.
38 Z. Mou, B. Liu, M. Wang, H. Xie, P. Li, L. Li, S. Li, D. Cui,
Chem. Commun. 2014, 50, 11411.
3 G. Q. Chen, M. K. Patel, Chem. Rev. 2012, 112, 2082.
4 S. Inkinen, M. Hakkarainen, A. C. Albertsson, A. Sodergard,
Biomacromolecules 2011, 12, 523.
39 T. Ebrahimi, E. Mamleeva, I. Yu, S. G. Hatzikiriakos, P.
Mehrkhodavandi, Inorg Chem. 2016, 55, 9445.
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2017, 00, 000–000
9