1,3-DC of ketoimine under an organic Lewis acid cum oxidant.
The remarkable diastereoselectivity that was found experimentally
is predicted by a DFT study. This simple synthetic route is
extended toward synthesis of fused-pyrroles and sugar-based
chiral imidazoles.
We acknowledge the financial support of this work by the
DST (SR/S1/OC-22/2006), CRNN and CSIR (SRF), India.
Notes and references
1 (a) K. V. Gothelf and K. A. Jørgensen, Chem. Rev., 1998, 98,
863–909; (b) L. M. Stanley and M. P. Sibi, Chem. Rev., 2008, 108,
2887–2902; (c) D. K. Maiti, N. Chatterjee, P. Pandit and
S. K. Hota, Chem. Commun., 2010, 46, 2022–2024.
2 (a) R. Huisgen, in 1,3-Dipolar Cycloaddition Chemistry, ed.
A. Padwa, Wiley, New York, 1984, vol. 1; (b) I. Coldham and
R. Hufton, Chem. Rev., 2005, 105, 2765–2809; (c) G. Pandey,
P. Banerjee and S. R. Gadre, Chem. Rev., 2006, 106, 4484–4517.
3 (a) S. Cabrera, R. G. Arrayas and J. C. Carretero, J. Am. Chem. Soc.,
2005, 127, 16394–16395; (b) T. Tsubogo, S. Saito, K. Seki,
Y. Yamashita and S. Kobayashi, J. Am. Chem. Soc., 2008, 130,
13321–13332.
4 (a) R. Grigg, M. Jordan and J. F. Malone, Tetrahedron Lett., 1979,
20, 3877–3878; (b) P. Armstrong, R. Grigg, M. W. Jordan and
J. F. Malone, Tetrahedron, 1985, 41, 3547–3558; (c) R. Grigg,
C. Kilner, M. A. B. Sarker, C. O. de la Cierva and H. A. Dondas,
Tetrahedron, 2008, 64, 8974–8991.
5 (a) N. Chatterjee, P. Pandit, S. Halder, A. Patra and D. K. Maiti,
J. Org. Chem., 2008, 73, 7775–7778; (b) P. Pandit, N. Chatterjee,
S. Halder, S. K. Hota, A. Patra and D. K. Maiti, J. Org. Chem.,
2009, 74, 2581–2584; (c) D. K. Maiti, S. Halder, P. Pandit,
N. Chatterjee, D. D. Joarder, N. Pramanik, Y. Saima, A. Patra
and P. K. Maiti, J. Org. Chem., 2009, 74, 8086–8097.
6 (a) D. Sampedro, A. Migani, A. Pepi, E. Busi, R. Basosi, L. Latterini,
F. Elisei, S. Fusi, F. Ponticelli, V. Zanirato and M. Olivucci, J. Am.
Chem. Soc., 2004, 126, 9349–9359; (b) M. Obata, S. Hirohara,
R. Tanaka, I. Kinoshita, K. Ohkubo, S. Fukuzumi, M. Tanihara
and S. Yano, J. Med. Chem., 2009, 52, 2747–2753.
Scheme 2 Possible reaction path and DFT study.
Table 4 Geometry optimization of diastereomer 4a and 5a
Density functional theory
ab initio
B3LYP/
6-31G
B3LYP/
6-311G
B3LYP/
6-311G**
HF/6-31G
Energy
7 (a) T. H. Jones, V. E. Zottig, H. G. Robertson and R. R. Snelling,
J. Chem. Ecol., 2003, 29, 2721–2727; (b) V. C. Clark, C. J. Raxworthy,
V. Rakotomalala, P. Sierwald and B. L. Fisher, Proc. Natl. Acad. Sci.
U. S. A., 2005, 102, 11617–11622; (c) A. Adams and N. D. Kimpe,
Chem. Rev., 2006, 106, 2299–2319; (d) T.-C. Huang, C.-S. Teng,
J.-L. Chang, H.-S. Chuang, C.-T. Ho and M.-L. Wu, J. Agric. Food
Chem., 2008, 56, 7399–7404.
aDE4a–5a
aE5a
À7.85
À730475.66
À730483.51
À6.81
À8.62
À9.01
À735192.83
À735199.64
À735359.41
À735368.03
À735578.28
À735587.29
aE4a
Energy reported in kcal molÀ1
.
a
8 (a) B. B. Snider and B. J. Neubert, Org. Lett., 2005, 7, 2715–2718;
(b) R. Alibes, P. Blanco, E. Casas, M. Closa, P. d. March,
M. Figueredo, J. Font, E. Sanfeliu and A. A. Larena, J. Org.
Chem., 2005, 70, 3157–3167.
9 V. B. R. Iska, V. Verdolino, O. Wiest and P. Helquist, J. Org.
Chem., 2010, 75, 1325–1328.
10 (a) S. Peddibhotla and J. J. Tepe, J. Am. Chem. Soc., 2004, 126,
12776–12777; (b) S. Mangelinckx, N. Giubellina and N. D. Kimpe,
Chem. Rev., 2004, 104, 2353–2399; (c) M. P. Sibi, T. Soeta and
C. P. Jasperse, Org. Lett., 2009, 11, 5366–5369.
11 A. Soldevilla, D. Sampedro, P. J. Campos and M. A. Rodrıguez,
J. Org. Chem., 2005, 70, 6976–6979.
12 V. V. Zhdankin and P. J. Stang, Chem. Rev., 2008, 108, 5299–5358.
13 B. M. Cochran and F. E. Michael, Org. Lett., 2008, 10, 5039–5042.
14 CCDC deposition code of compound 4a: 773893.
15 P. Vachal and E. N. Jacobsen, Org. Lett., 2000, 2, 867–870.
16 (a) J. W. Huffman, Curr. Med. Chem., 1999, 6, 705–720;
(b) R. B. Thompson, FASEB J., 2001, 15, 1671–1676;
(c) S. Thirumalairajan, B. M. Pearce and A. Thompson, Chem.
Commun., 2010, 46, 1797–1812.
17 (a) H.-Y. Jiang, C.-H. Zhoub, K. Luoa, H. Chena, J.-B. Lana and
R.-G. Xie, J. Mol. Catal. A: Chem., 2006, 260, 288–294;
(b) A. V. Gulevich, E. S. Balenkova and V. G. Nenajdenko,
J. Org. Chem., 2007, 72, 7878–7885.
18 (a) M. J. Frisch et al., GAUSSIAN 03 (Revision B.03), Gaussian, Inc.,
Wallingford, CT, 2004; (b) G. Barea, F. Maseras and A. Liedos, New
J. Chem., 2003, 27, 811–817; (c) F. Freeman, P. Dang, A. C. Huang,
A. Mack and K. Wald, Tetrahedron Lett., 2005, 46, 1993–1995.
involving reductive elimination of the hypervalent-iodane
moiety toward diastereomers 4a(cis–cis) and 5a(trans–cis).
However, 5a was not found from the post-reaction mixture.
We have carried out geometry optimization of the
4a(cis–cis) and 5a(trans–cis) by both ab initio and density
functional theory (DFT) as implemented in the Gaussian 03
program.5a,c,18 Results in Table 4 reveal that 4a is the
thermodynamically stable product. The ground state energy
difference (DE4a–5a) between 4a (E4a) and 5a (E5a) is as high as
À9.01 kcal molÀ1. However, conformational and steric
outcome under kinetic control can be rationalized by comparing
the relative geometry and energy optimized transition state TS
III (between I and III) with the TS IV (between II and IV) at
the formal 1,3-DC step.5a,18c Each of the azomethine ylide
complexes of 67 atoms including iodine is computed in
B3LYP/6-311G** and LANL2DZ18b basis sets. TS III is
found as relatively more stable by À9.51 kcal molÀ1 compared
to TS IV. Thus, a lower activation energy barrier for TS III
drives the formal cycloaddition reaction in favor of the
complete diastereoselective synthesis of 4a.
In conclusion, we have for the first time demonstrated the
synthesis of fused-D1-pyrrolines by an intramolecular formal
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 1285–1287 1287