874
L. C. Blumberg et al. / Tetrahedron Letters 52 (2011) 872–874
921. For examples of 1,3 dipolar cycloadditions of nonstabilized azomethine
ylides:; (k) Vedejs, E.; Martinez, G. R. J. Am. Chem. Soc. 1979, 101, 6452; (l)
Achiwa, K.; Sekiya, M. Chem. Lett. 1981, 1213; (m) Padwa, A.; Dent, W. Org.
Synth. 1988, 67, 133–140; (n) Padwa, A.; Dent, W. J. Org. Chem. 1987, 52, 235–
244; (o) Padwa, A. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon Press: Oxford, 1991; Vol. 4, pp 1090–1109; (p) Padwa, A.; Dent,
W. Org. Synth. 1989, 67, 133–136; (q) Terao, Y.; Kotaki, H.; Imai, N.; Achiwa, K.
Chem. Pharm. Bull. 1985, 33, 2762–2766; (r) Huck, B. R.; Llamas, L.; Robarge, M.
J.; Dent, T. C.; Song, J.; Hodnick, W. F.; Crumrine, C.; Stricker-Krongrad, A.;
Harrington, J.; Brunden, K. R.; Bennani, Y. L. Bioorg. Med. Chem. Lett. 2006, 16,
4130–4134; (s) Roy, S.; Kishbaugh, T. L. S.; Jasinski, J. P.; Gribble, G. W.
Tetrahedron Lett. 2007, 48, 1313–1316; (t) Belfaitah, A.; Isly, M.; Carboni, B.
Tetrahedron Lett. 2004, 45, 1969–1972; (u) Komatsu, M.; Hirofumi, O.; Yokoi, S.;
Minakata, S. Tetrahedron Lett. 2003, 44, 1603–1606; (v) Belanger, G.; Darsigny,
V.; Dore, M.; Levesque, F. Org. Lett. 2010, 12, 1396–1399.
low, if formed this product would quickly react further to form the
bisadduct 14f. Therefore, we cannot eliminate the possibility that
the methine ylide also reacts with the
a,b-olefin of the starting
diene 3f. In the case of the cyano substituted diene 3g, a 1:1 ratio
of mono addition products 1g and 13g is produced. In addition,
since both products are still reactive, as predicted by their low
LUMO energies, a significant amount of bis adduct 14g is observed
in the crude 1H NMR.
Our results are consistent with those reported by Gerlach et al.
As observed in our reaction with 3e, the steric effects can out-
weigh the electronic effects, resulting in preferred cycloaddition
on the less hindered terminal olefin. However, based on our expe-
rience it is somewhat surprising that Gerlach did not report any bis
adduct formation as a result of the dipole reacting with the still
activated olefin in the products 5 and 7. While it may be possible
that further reaction with product 7 is prevented by the steric bulk
of the chiral center on the furanone, we would expect that cycload-
dition to 5 would be possible under our reaction conditions. It is
important to note that the activation of the dipole with LiF, basic
conditions, could also result in a difference in the reactivity.
Our study demonstrates that the 1,3-dipolar cycloaddition of
unactivated azomethine ylide to activated 1,4-dienes is a powerful
method to synthesize highly versatile building blocks. With the
2. Chiral dipolarophiles: (a) Fray, A. H.; Meyers, A. I. J. Org. Chem. 1996, 61, 3362;
(b) Fray, A. H.; Meyers, A. I. Tetrahedron Lett. 1992, 33, 3575–3578; (c) Meyers,
A. I.; Fray, A. H. Bull. Soc. Chim. Fr. 1997, 134, 283–298; (d) Karlsson, S.; Han, F.;
Hogberg, H.-E.; Caldirola, P. Tetrahedron: Asymmetry 1999, 10, 2606–2616; (e)
Li, Q.; Wang, W.; Berst, K. B.; Claiborne, A.; Hasvold, L.; Raye, K.; Tufano, M.;
Nilius, A.; Shen, L. L.; Flamm, R.; Alder, J.; Marsh, K.; Crowell, D.; Chu, D. T. W.;
Plattner, J. J. Bioorg. Med. Chem. Lett. 1998, 8, 1953–1958; (f) Fukui, H.; Shibata,
T.; Naito, T.; Nakano, J.; Maejima, T.; Senda, H.; Iwatani, W.; Tatsumi, Y.; Suda,
M.; Aurika, T. Bioorg. Med. Chem. Lett. 1998, 8, 2833–2838; (g) Ma, Z.; Wang, S.;
Cooper, C. S.; Fung, A. K. L.; Lynch, J. K.; Plagge, F.; Chu, D. T. W. Tetrahedron:
Asymmetry 1997, 8, 883–887; (h) Ling, R. I.; Ekhato, V.; Rubin, J. R.; Wustrow, D.
J. Tetrahedron 2001, 57, 6579–6588; (i) Srihari, P.; Yaragorla, S. R.; Basu, D.;
Chandrasekhar, S. Synthesis 2006, 16, 2646–2648; (j) Karlsson, S.; Hogberg, H.-
E. Tetrahedron: Asymmetry 2001, 12, 1977–1982; (k) Karlsson, S.; Hogberg, H.-E.
Tetrahedron: Asymmetry 2001, 12, 1975–1976.
3. Chiral auxiliary on azomethine ylide: (a) Cottrell, I. F.; Hands, D.; Kennedy, D. J.;
Paul, K. J.; Wright, S. H. B.; Hoogsteen, K. J. Chem. Soc., Perkin Trans. 1 1991,
1091–1097; (b) Garner, P.; Kaniskan, H. U. Tetrahedron Lett. 2005, 46, 5181–
5185; (c) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484–4517.
4. Chiral catalysts for 1,3-dipolar cycloadditions: (a) Gao, W.; Zhang, X.;
Raghunath, M. Org. Lett. 2005, 7, 4241–4244; (b) Llamas, T.; Arrayas, R. G.;
Carretero, J. C. Org. Lett. 2006, 8, 1795–1798; (c) Dogan, O.; Koyuncu, H.; Garner,
P.; Bulut, A.; Youngs, W. J.; Panzner, M. Org. Lett. 2006, 8, 4687–4690; (d) Yu, J.;
He, L.; Chen, X.-H.; Song, J.; Chen, W.-J.; Gong, L.-Z. Org. Lett. 2009, 11, 4946–
4949; (e) Hernandez-Toribio, J.; Arrayas, R. G.; Martin-Matute, B.; Carretero, J.
C. Org. Lett. 2009, 11, 393–396; (f) Xue, Z.-Y.; Liu, T.-L.; Lu, Z.; Huang, H.; Tao,
H.-Y.; Wang, C.-J. Chem. Commun. 2010, 46, 1727–1729; (g) Iza, A.; Carrillo, L.;
Vicario, J. L.; Badia, D.; Reyes, E.; Martinez, J. I. Org. Biomol. Chem. 2010, 8, 2238–
2244; (h) Husinec, S.; Savic, V. Tetrahedron: Asymmetry 2005, 16, 2047–2061;
(i) Shi, M.; Shi, J.-W. Tetrahedron: Asymmetry 2007, 18, 645–650; (j) Najera, C.;
Sansano, J. M. Top. Heterocycl. Chem. 2008, 12, 117–145.
(5). Gerlach, K.; Hoffmann, H. M. R.; Wartchow, R. J. Chem. Soc., Perkin Trans. 1
1998, 3867–3872.
6. Calculations of the HOMO LUMO energies and orbital coefficients have been
done with Jaguar, version 7.6, Schrödinger, LLC, New York, NY, 2009. A full
summary of these calculations is found in the Supplementary Data for this
publication.
7. (a) Horner, L.; Hoffmann, H.; Wippel, H. G. Chem. Ber. 1958, 91, 61; (b) Horner,
L.; Hoffmann, H.; Wippel, H. G.; Klahre, G. CHem Ber. 1959, 92, 2499; (c)
Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733.
8. (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–927; (b) Bestmann, H.
J.; Vostrowsky, O. Top. Curr. Chem. 1983, 109, 85–164; (c) Pommer, H.; Thieme,
P. C. Top. Curr. Chem. 1983, 109, 165–188; (d) Pommer, H. Angew. Chem., Int. Ed.
1977, 16, 423–429; (e) Maecker, A. Or. React. 1965, 14, 270–490.
9. (a) Isler, O.; Gutmann, H.; Montavon, M.; Ruegg, R.; Ryser, G.; Zeller, P. Helv.
Chim. Acta 1957, 40, 1242; (b) House, H.; Rasmusson, G. J. Org. Chem. 1961, 26,
4278–4281.
introduction of a simple methyl substitution on either the
positions of these dienes the chemoselectivity can be ensured, to
provide a single product in synthetically useful yields (Table 1).
c or d
Acknowledgments
Funding was provided by the Pfizer Groton Discovery Chemistry
Summer Internship Program. Diane Rescek provided 2D NMR sup-
port for the structure elucidation of several products, and George
Perkins provided the High Resolution Mass Spectrometry data.
Supplementary data
Supplementary data (the 1H NMR and GS-MS spectra of the
crude reaction mixtures produced from all of the dipolar cycload-
ditions, the experimental and characterization data for all isolated
products, and calculated HOMO and LUMO energies and coeffi-
cients, have been included in the supplementary data) associated
with this article can be found, in the online version, at
References and notes
1. For reviews on 1,3 dipolar cycloadditions of nonstabilized azomethine ylides:
(a) Harwood, L. M.; Vickers, R. J. The Chemistry of Heterocyclic Compounds In
Padwa, A., Pearson, W. H., Eds.; Synthetic Applications of 1,3-Dipolar
Cycloaddition Chemistry Toward Heterocycles and Natural Products; Wiley:
New York, NY, 2002; Vol. 59, pp 169–252; (b) Vedejs, E. In Advances in
Cycloaddition; Curran, D. P., Ed.; Jai Press: Greenwich, CT, 1988; pp 33–51; (c)
Eberbach, W. Sci. Synth. 2004, 27, 441–498; (d) Najera, C.; Sansano, J. M. Curr.
Org. Chem. 2003, 7, 1105–1150; (e) Terao, Y.; Aono, M.; Achiwa, K. Heterocycles
1998, 27, 981–1008; (f) Koumbis, A. E.; Gallos, J. K. Curr. Org. Chem. 2003, 7,
771–797; (g) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765; (h) Vedejs, E.;
West, F. G. Chem. Rev. 1986, 86, 941; (i) Dong, J.; Kou, B.; Li, R.; Cheng, T. Synth.
Commun. 2002, 32, 935–939; (j) Pearson, W. H.; Stoy, P. Synlett 2003, 7, 903–
10. (a) 1,3-Cycloadditions to nitro olefins and cyan olefins are known.; (b) Xie, J.;
Yoshida, K.; Takasu, K.; Takemoto, Y. Tetrahedron Lett. 2008, 49, 6910–6913; (c)
Boruah, M.; Konwar, D.; Sharma, S. D. Tetrahedron Lett. 2007, 48, 4535–4537;
(d) Baumann, M.; Baxendale, I. R.; Ley, S. V. Synlett 2010, 5, 749–752.
11. Cote, A.; Lindsay, V. N. G.; Charette, A. B. Org. Lett. 2007, 9, 85–87.
12. Vogel, G. J. Org. Chem. 1965, 30, 203–207.
13. The peaks for all three products are evident in the 1H NMR of the crude mix,
(1a/13a 6.7:1) we were unable to definitively determine the relative amount of
bis adduct 14a.