346
S. Kannan et al. / Polyhedron 30 (2011) 340–346
[6] P. Lemoine, B. Viossat, G. Morgant, F.T. Greenaway, A. Tomas, N.H. Dung, J.J.R.
4. Conclusion
Sorenson, J. Inorg. Biochem. 89 (2002) 18.
[7] R.L. Rardin, A. Bino, P. Poganiuch, W.B. Tolman, S. Liu, S.J. Lippard, Angew.
Chem., Int. Ed. Engl. 129 (1990) 812.
[8] J.A. Ibers, R.H. Holm, Science 209 (1980) 223.
In summary, use of the sterically-hindered 2,6-di-(p-fluoro-
phenyl)benzoate and 3,5-dimethylpyrazole ligand afforded a series
of mononuclear divalent transition metal complexes. Although
compound 1, 2, 3 and [Fe(O2CAr4-FPh)2(Hdmpz)2] have identical li-
gand components, coordination geometry alters from tetrahedral
to octahedral and square pyramidal depending on metal ion entity.
It indicated that the geometry of coordination metal complexes is
determined not only by the coordination environment but also by
metal entity itself.
The ligands in metalloproteins are usually derived from amino
acid side chain. The flexibility of such ligands is limited because
the main chains with peptide bonds are localized in tertiary struc-
tures of enzymes. Thus, the coordination bonds between the metal
ion and ligands from amino acid side chain may be severely re-
strained, resulting in the uncommon coordination geometry in
the active site of metalloproteins often different from the small
model complexes with synthetic ligands. In this work, however,
due to the use of sterically hindered ligand, very uncommon coor-
dination geometry could be modeled.
[9] H.A.O. Hill, Chem. Br. 1976 (1976) 119.
[10] H. Sigel (Ed.), Metal Ions in Biological Systems, Marcel Dekker, New York, 1998.
[11] R.J.P. Williams, in: J.J.R. Frausto de Silva (Ed.), The Natural Selection of the
Chemical Elements: The Environment and Life’s Chemistry, Oxford University
Press, Oxford, 1996.
[12] J.J.R. Frausto de Silva, R.J.P. Williams, The Biological Chemistry of the Elements,
Clarendon Press, Oxford, 1991.
[13] S.J. Lippard, J.M. Berg, Principal of Bioinorganic Chemistry, University Science
Books, Mill Valley, CA, 1994.
[14] U.P. Singh, V. Aggarwal, A.K. Sharma, Inorg. Chim. Acta 360 (2007) 3226 (and
references there in).
[15] M.A. Halcrow, Monocopper Oxygenases. Comprehensive Coordination
Chemistry II, vol. 8, Elsevier, 2004. pp. 395–436.
[16] B.J. Barzeau, B.J. Johnson, C.M. Wilmot, Arch. Biochem. Biophys. 428 (2004) 22.
[17] J.P. Klinman, J. Biol. Chem. 281 (2006) 3013.
[18] A. Karmakar, R.J. Sarma, J.B. Baruah, Eur. J. Inorg. Chem. (2006) 4673.
[19] A. Karmakar, K. Deka, R.J. Sarma, J.B. Baruah, Inorg. Chem. Commun. 9 (2006)
836.
[20] R.N. Patel, N. Singh, V.L.N. Gundla, Polyhedron 26 (2007) 757.
[21] J. Ueda, T. Ozawa, M. Miyazaki, Y. Fujiwara, Inorg. Chim. Acta 214 (1993) 29.
[22] N. Cotelle, E. Tremolieres, J.L. Bernier, J.P. Catteau, J.P. Henichart, J. Inorg.
Biochem. 46 (1992) 7.
[23] R.P. Hausinger, Biochemistry of Nickel, vol. 12, Plenum Press, New York, 1993.
pp. 23–180.
[24] U.P. Singh, V. Aggarwal, S. Kashyap, S. Upreti, Transition Met. Chem. 34 (2009)
513.
Acknowledgement
[25] M. Dolores Santana, G. Garcia, G. Lopez, A. Lozano, C. Vicente, L. Garcia, J. Perez,
Polyhedron 26 (2007) 1029 (and references there in).
[26] D. Lee, S.J. Lippard, J. Am. Chem. Soc. 120 (1998) 12153.
[27] J.R. Hagadorn, L. Que Jr., W.B. Tolman, J. Am. Chem. Soc. 120 (1998) 13531.
[28] J. Du Bois, T.J. Mizoguchi, S.J. Lippard, Coord. Chem. Rev. 200–202 (2000) 443.
[29] S. Yoon, S.J. Lippard, J. Am. Chem. Soc. 127 (2005) 8386 (and references there
in).
[30] D. Lee, P.-L. Hung, B. Spingler, S.J. Lippard, Inorg. Chem. 41 (2002) 521.
[31] D.A. Dickie, G. Schatte, M.C. Jennings, H.A. Jenkins, S.Y.L. Khoo, J.A.C. Clyburne,
Inorg. Chem. 45 (2006) 1646.
[32] D. Reger, A. Debreczeni, B. Reinecke, V. Rassolov, M.D. Smith, R.F. Semeniuc,
Inorg. Chem. 48 (2009) 8911.
[33] C.-J.F. Du, H. Hart, K.-K. Daniel Ng, J. Org. Chem. 51 (1986) 3162.
[34] C.-T. Chen, J. Siegel, J. Am. Chem. Soc. 116 (1994) 5959.
[35] A. Saednya, H. Hart, Synthesis (1996) 1455.
This work was supported partly by the Korea Science and Engi-
neering Foundation (KOSEF) grant and the Converging Research
Center Program through the National Research Foundation of Kor-
ea (NRF) (No. 2009-0082832) funded by the Korea government
(MEST). This work was also supported in part by KIST (Korea Insti-
tute of Science & Technology) for ‘National Agenda Project pro-
gram’, the faculty research program 2009 of Kookmin University
in Korea and the Korea Science and Engineering Foundation
(KOSEF) grant funded by the Korea government (MEST) (No. R11-
2005-048-00000-0).
[36] G.M. Sheldrick, Program Library for Structure Solution and Molecular
Graphics: Version 6.2, Bruker AXS: Madison, WI, 2000.
[37] G.M. Sheldrick, SADABS: Area-Detector Absorption Correction, University of
Appendix A. Supplementary data
Gottingen, Gottingen, Germany, 2001.
[38] A.L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University,
Utrecht, The Netherlands, 2000.
CCDC 693438, 693439 and 695841 contains the supplementary
crystallographic data for 1, 2 and 3. These data can be obtained free
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: de-
posit@ccdc.cam.ac.uk. Supplementary data associated with this
article can be found, in the online version, at doi:10.1016/
[39] S. Trofimenko, Chem. Rev. 93 (1993) 943.
[40] M. Mohan, M.R. Bond, T. Otieno, C.J. Carrano, Inorg. Chem. 34 (1995) 1233.
[41] B. Machura, M. Jaworska, R. Kruszynski, Polyhedron 23 (2004) 2523.
[42] Y.-J. Sun, B. Zhao, P. Cheng, Inorg. Chem. Commun. 10 (2007) 583.
[43] M. Padmanabhan, S.M. Kumary, X.Y. Huang, J. Li, Inorg. Chim. Acta 358 (2005)
3537.
[44] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, John Wiley and Sons, New York, 1986.
[45] M.P. Suh, Y.H. Oh, Bull. Kor. Chem. Soc. 3 (1982) 5.
[46] W.T. Lowther, D.A. McMillen, A.M. Orville, B.W. Matthews, Proc. Natl. Acad. Sci.
USA 95 (1998) 12153.
References
[47] J.R. Hagadorn, L. Que Jr., W.B. Tolman, Inorg. Chem. 39 (2000) 6086.
[48] S.H. Kim, B.K. Park, Y.J. Song, S.M. Yu, H.G. Koo, E.Y. Kim, J.I. Poong, J.H. Lee, C.
Kim, S.J. Kim, Y. Kim, Inorg. Chim. Acta 362 (2009) 4119.
[49] A.W. Addison, T.N. Rao, J. Reedijk, J. Van Rijn, G.C. Verchoor, J. Chem. Soc.,
Dalton Trans. (1984) 1349.
[1] R.L. Rardin, W.B. Tolman, S.J. Lippard, New J. Chem. 15 (1991) 417.
[2] H. Adams, S. Clunas, D.E. Fenton, S.E. Spey, Dalton Trans. (2002) 441.
[3] J. Kuzelka, J.R. Farrell, S.J. Lippard, Inorg. Chem. 42 (2003) 8652.
[4] Y. Tshuva, S.J. Lippard, Chem. Rev. 104 (2004) 987.
[50] S. Yoon, S.J. Lippard, J. Am. Chem. Soc. 126 (2004) 2666.
[5] A. Salifoglou, Coord. Chem. Rev. 228 (2002) 297.