STABILITY AND REACTIVITY OF ACTIVATED ACRYLOYLCARBAMATES
Computational details
123.04 (C-30,50); 129.30 (C-10); 147.97 (C-20,60); 149.53 (C-40); 154.33
(C-2); 158.71 (C-6); 169.64 (C-4).HR-MS for C25H41N2O3 (M þ H)þ
calcd 417.3112, found 417.3111.
All the density functional theory (DFT) calculations reported in
the study were carried out using the Turbomole 6.0 program.[37]
The Perdew–Burke–Ernzerhof (PBE)[38] and hybrid three-para-
[39–42]
´
meter Beckes
(B3LYP) functionals were used throughout.
Methyl (E)-3-ethoxy-2-methylacryloylcarbamate (12)
The calculations were expedited by expanding the Coulomb
integrals in an auxiliary basis set, the resolution-of-identity (RI-J)
approximation.[43,44] All the geometry optimisations were con-
ducted using the def2-SVP basis set,[45,46] whereas the single-
point energies were recomputed in the def2-TZVP (triple-zeta
valence with two polarisation functions on each atom).[47]
To account for the solvation effects, the conductor-like
screening model (COSMO) method[45–48] was used with the
dielectric constant corresponding to chloroform (er ¼ 4.9). In order
to account for dispersion, we used the DFT þ D method (i.e. the
DFT method with the empirical dispersion terms) available in
Turbomole 6.0.[49] The Gibbs free energy was then calculated as
the sum of these contributions:
1H NMR (CDCl3, 500.0 MHz): 1.33 t, 3H, J(CH3,CH2) ¼ 7.1
(CH3CH2O); 1.83 d, 3H, J(CH3,6) ¼ 1.2 (5-CH3); 3.79 s, 3H (CH3O);
4.08 q, 2H, J(CH2,CH3) ¼ 7.1 (OCH2CH3); 7.42 q, 1H, J(6,CH3) ¼ 1.2
(H-6); 7.79 bs, 1H (H-3). 13C NMR (CDCl3, 125.7 MHz): 9.07 (5-CH3);
15.26 (CH3CH2O); 52.72 (CH3O); 70.12 (OCH2CH3); 107.09 (C-5);
151.93 (C-2); 157.59 (C-6); 165.97 (C-4).HR-MS for C8H13NO4Na
(M þ H þ Na)þ calcd 210.0742, found 210.0741.
Acknowledgements
The authors gratefully acknowledge the financial support by the
Ministry of Education, Youth, and Sports of the Czech Republic
(Research projects Z40550506, 2B06065, and LC512) and the
Ministry of Health (Grant NR/9138 – 3).
G ¼ Eel þ Gsolv þ EZPE ꢀ RT lnðqtrans qrot qvibÞ;
where Eel is the in vacuo energy of the system (at the B3LYP/
def2-TZVP level and the geometry optimised at the RI-PBE/
def2-SVP level), Gsolv is the solvation free energy (at the RI-PBE/
def2-SVP level), EZPE is the zero-point energy and ꢀRT ln(qtrans qrot
qvib) accounts for the entropic terms and the thermal correction
to the enthalpy obtained from a frequency calculation using the
same method and software as for the geometry optimisation at
the RI-PBE/def2-SV(P) level, 298 K, and 1 atm using the ideal-gas
approximation.[50]
REFERENCES
[1] C. M. Galmarini, J. R. Mackey, C. Dumontet, Lancet Oncol. 2002, 3(7),
415–424.
[2] S. Miura, S. Izuta, Curr. Drug. Target. 2004, 5(2), 191–195.
[3] C. Simons, Q. Wu, T. T. Htar, Curr. Top. Med. Chem. 2005, (13),
1191–1203.
[4] S. W. Schneller, Curr. Top. Med. Chem. 2002, 2(10), 1087–1092.
[5] L. S. Jeong, J. A. Lee, Antivir. Chem. Chemother. 2004, 15(5), 235–250.
´
[6] A. Holy, Antivir. Res. 2006, 71(2–3), 248–253.
[7] D. Rejman, M. Masoj´ıdkova, E. De Clercq, I. Rosenberg, Nucleosides
(E)-3-Ethoxy-2-methylacryloyl isocyanate (3b)
´
1H NMR (CDCl3, 500.0 MHz): 1.36 t, 3H, J(CH3,CH2) ¼ 7.1
(CH3CH2O); 1.82 d, 3H, J(CH3,CH) ¼ 1.2 (CH3); 4.13 q, 2H,
J(CH2,CH3) ¼ 7.1 (OCH2CH3); 7.53 q, 1H, J(CH,CH3) ¼ 1.2 (CH¼).
13C NMR (CDCl3, 125.7 MHz): 8.79 (CH3); 15.34 (CH3CH2O); 70.98
(OCH2CH3); 110.19 (C¼); 130.47 (NCO); 162.82 (CH¼); 165.52 (CO).
Nucleotides 2001, 20(8), 1497–1522.
ˇ
[8] P. Kocalka, R. Pohl, D. Rejman, I. Rosenberg, Tetrahedron 2006, 62,
5763–5774.
ˇ
ˇ ˇ
´
[9] D. Rejman, P. Kocalka, M. Budes´ınsky, R. Pohl, I. Rosenberg, Tetra-
hedron 2007, 63(5), 1243–1253.
[10] K. Yamada, S. Sakata, Y. Yoshimura, J. Org. Chem. 1998, 63,
6891–6899.
[11] W. Lu, S. Sengupta, J. L. Petersen, N. G. Akhmedov, X. Shi, J. Org. Chem.
2007, 72, 5012–5015.
[12] B. Y. Michel, P. Strazewski, Tetrahedron 2007, 63, 9836–9841.
[13] H. M. Abrams, L. Ho, S. H. Chu, J. Heterocyc. Chem. 1981, 18, 947–951.
[14] M. Tokumi, K. Shigetada, U. Mayuko, Nucleosides Nucleotides 1999,
18(4–5), 661–672.
1-(2,4,6-Tri-tert-butylphenyl)-3-((E)-3-ethoxyacryloyl)urea
(11a)
1H NMR (CDCl3, 500.0 MHz): 1.30 s, 9H ((CH3)3C-40); 1.32 t, 3H,
J(CH3,CH2) ¼ 7.1 (CH3CH2O); 1.40 s, 18H ((CH3)3C-20,60); 3.90 q, 2H,
J(CH2,CH3) ¼ 7.1 (OCH2CH3); 5.26 d, 1H, J(5,6) ¼ 12.2 (H-5); 7.40 s,
2H, (H-30,50); 7.72 d, 1H, J(6,5) ¼ 12.2 (H-6); 8.54 bs, 1H (H-3); 10.29
bs, 1H (H-1). 13C NMR (CDCl3, 125.7 MHz): 14.48 (CH3CH2O); 31.38
((CH3)3C-40); 31.86 ((CH3)3C-20,60); 34.97 ((CH3)3C-40); 36.19
((CH3)3C-20,60); 67.87 (OCH2CH3); 97.48 (C-5); 122.93 (C-30,50);
129.26 (C-10); 148.01 (C-20,60); 149.55 (C-40); 154.77 (C-2); 163.84
(C-6); 168.26 (C-4).HR-MS for C24H39N2O3 (M þ H)þ calcd
403.2955, found 403.2955.
[15] T. Keiko, M. Masako, T. Tadakazu, J. Heterocyc. Chem. 1997, 34(2),
669–673.
[16] G. Shaw, R. N. Warrener, J. Chem. Soc. 1958, 153–156.
[17] G. Shaw, R. N. Warrener, J. Chem. Soc. 1958, 157–161.
[18] Y. F. Shealy, C. A. O’Dell, J. Heterocyc. Chem. 1976, 13, 1015–1020.
[19] P. G. Wyatt, A. S. Anslow, B. A. Coomber, R. P. C. Cousins, D. N. Evans, V.
S. Gilbert, D. C. Humber, I. L. Paternoster, S. L. Sollis, D. J. Tapolczay, G.
G. Weingarten, Nucleosides Nucleotides 1995, 14, 2039–2049.
ˇ
´
´
[20] H. Hrebabecky, M. Masoj´ıdkova, A. Holy, Collect. Czech. Chem. Com-
´
mun. 2005, 70, 519–538.
[21] R. Csuk, Y. von Scholz, Tetrahedron 1995, 51, 7193–7206.
[22] A. D. Borthwick, D. N. Evans, B. E. Kirk, K. Biggadike, A. M. Exal, P. Youds,
S. M. Roberts, D. J. Knight, A. V. Coates, J. Med. Chem. 1990, 33,
179–186.
1-(2,4,6-Tri-tert-butylphenyl)-3-((E)-3-ethoxy-2-
methylacryloyl)urea (11b)
[23] M. Bodenteich, V. E. Marquez, J. J. Barchi, W. H. Hallows, B. M.
Goldstein, J. S. Driscoll, J. Org. Chem. 1993, 58, 6009–6015.
[24] F. Hosono, S. Nishiyama, S. Yamamura, Tetrahedron 1994, 50(47),
13335–13346.
[25] S. Raganathan, K. S. George, Tetrahedron 1997, 53(9), 3347–3362.
[26] H. Miyabe, S. Kanehira, K. Kume, H. Kandori, T. Naito, Tetrahedron
1998, 54, 5883–5892.
1H NMR (CDCl3, 500.0 MHz): 1.31 s, 9H ((CH3)3C-40); 1.33 t, 3H,
J(CH3,CH2) ¼ 7.1 (CH3CH2O); 1.42 s, 18H ((CH3)3C-20,60); 1.84 d, 3H,
J(CH3,6) ¼ 1.2 (5-CH3); 4.04 q, 2H, J(CH2,CH3) ¼ 7.1 (OCH2CH3);
7.43 s, 2H, (H-30,50); 7.58 q, 1H, J(6,CH3) ¼ 1.2 (H-6); 7.95 bs, 1H
(H-3); 10.45 bs, 1H (H-1). 13C NMR (CDCl3, 125.7 MHz): 8.83 (5-CH3);
15.44 (CH3CH2O); 31.37 ((CH3)3C-40); 31.87 ((CH3)3C-20,60); 34.98
((CH3)3C-40); 36.20 ((CH3)3C-20,60); 70.54 (OCH2CH3); 105.68 (C-5);
[27] H. R. Moon, H. O. Kim, M. W. Chun, L. S. Jeong, J. Org. Chem. 1999, 64,
4733–4741.
J. Phys. Org. Chem. 2011, 24 423–430
Copyright ß 2010 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/poc