ORGANIC
LETTERS
Linear Fused Dithieno[2,3-b:3020-d]-
thiophene Diimides
2011
Vol. 13, No. 6
1410–1413
Wei Hong,† Haihong Yuan,† Hongxiang Li,*,† Xiaodi Yang,§ Xike Gao,† and
Daoben Zhu*,†,‡
Laboratory of Material Science, Shanghai Institute of Organic Chemistry, Chinese
Academy of Sciences, Shanghai 200032, P. R. China, Beijing National Laboratory of
Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, P. R. China, and Laboratory of Advanced
Materials, Fudan University, Shanghai 200438, P. R. China
lhx@mail.sioc.ac.cn; zhudb@iccas.ac.cn
Received January 12, 2011
ABSTRACT
Linear fused dithieno[2,3-b:3020-d]thiophene diimides (DTTDIs, 1-4) were synthesized. Physicochemical investigations suggested that these
diimides might be used as potential n-channel organic semiconductors. Single-crystal analysis of N-propyl DTTDI (1) revealed that molecules
adopt a layered herringbone packing motif.
. Aromatic imides are significant organic species that
benefit a wide range of applications as flexible optoelec-
tronic devices,1 chemical sensors,2 and supramolecular
assemblies.3 The properties of aromatic imides are strongly
dependent on their π-conjugated cores. For example, as
organic semiconductors of thin film transistors, anthracene
diimide derivatives (ADIs, Scheme 1) display electron trans-
port properties.4 In contrast, linear dibenzotetrathiafulva-
lene diimide derivatives (DBTTFDIs, Scheme 1) exhibit hole
transport characteristics.5 Until now, aromatic imide stu-
dies are primarily focused on fused phenyl imides, such as
naphthalene6 and perylene diimides7 (NDIs and PDIs,
† Laboratory of Material Science, Shanghai Institute of Organic Chem-
istry, Chinese Academy of Sciences.
§ Fudan University.
‡ Beijing National Laboratory of Molecular Sciences, Key Laboratory of
Organic Solids, Institute of Chemistry, Chinese Academy of Sciences.
(1) (a) Gao, X.; Di, C.; Hu, Y.; Yang, X.; Fan, H.; Zhang, F.; Liu, Y.;
Li, H.; Zhu, D. J. Am. Chem. Soc. 2010, 132, 3697. (b) Schmidt, R.; Oh,
J. H.; Sun, Y.-S.; Deppisch, M.; Krause, A.-M.; Radacki, K.; Braunschweig,
(4) (a) Weitz, R. T.; Amsharov, K.; Zschieschang, U.; Villas, E. B.;
Goswami, D. K.; Burghard, M.; Dosch, H.; Jansen, M.; Kern, K.;
Klauk, H. J. Am. Chem. Soc. 2008, 130, 4637. (b) Ling, M.-M.; Erk, P.;
Gomez, M.; Koenemann, M.; Locklin, J.; Bao, Z. Adv. Mater. 2007, 19,
1123.
(5) Gao, X.; Wang, Y.; Yang, X.; Liu, Y.; Qiu, W.; Wu, W.; Zhang,
H.; Qi, T.; Liu, Y.; Lu, K.; Du, C.; Shuai, Z.; Yu, G.; Zhu, D. Adv.
Mater. 2007, 19, 3037.
€
€
H.; Konemann, M.; Erk, P.; Bao, Z.; Wurthner, F. J. Am. Chem. Soc. 2009,
131, 6215. (c) Jung, B. J.; Sun, J.; Lee, T.; Sarjeant, A.; Katz, H. E. Chem.
Mater. 2009, 21, 94. (d) Jones, B. A.; Facchetti, A.; Wasielewski, M. R.;
Marks, T. J. J. Am. Chem. Soc. 2007, 129, 15259. (e) Zhan, X.; Facchetti, A.;
Barlow, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R.; Marder, S. R.
Adv. Mater. 2011, 23, 268.
(2) (a) Che, Y.; Yang, X.; Liu, G.; Yu, C.; Ji, H.; Zuo, J.; Zhao, J.;
Zang, L. J. Am. Chem. Soc. 2010, 132, 5743. (b) Mukhopadhyay, P.;
Iwashita, Y.; Shirakawa, M.; Kawano, S.; Fujita, N.; Shinkai, S. Angew.
Chem., Int. Ed. 2006, 45, 1592.
(6) For a recent review, see: Sakai, N.; Mareda, J.; Vautheyb, E.;
Matile, S. Chem. Commun. 2010, 46, 4225.
(3) For recent discussions on this topic, see: (a) Bhosale, S. V.; Jani,
C. H.; Langford, S. J. Chem. Soc. Rev. 2008, 37, 331. (b) Hoeben,
F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev.
2005, 105, 1491.
(7) (a) Wang, Z.; Kim, C.; Facchetti, A.; Marks, T. J. Am. Chem. Soc.
2007, 128, 13362. (b) Li, Y.; Tan, L.; Wang, Z.; Qian, H.; Shi, Y.; Hu, W.
Org. Lett. 2008, 10, 529. (c) Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.;
Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.
r
10.1021/ol103013d
Published on Web 02/18/2011
2011 American Chemical Society