A
R
T
I
C
L
E
N
A
T
U
R
E
C
O
M
M
U
N
I
C
A
T
I
O
N
S
|
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
1
0
3
8
/
s
4
1
4
6
7
-
0
2
0
-
1
4
9
8
5
-
8
17. Zhang, E. Z., Laufer, J. G., Pedley, R. B. & Beard, P. C. In vivo high-resolution
3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol.
54, 1035–1046 (2009).
45. Oldham, M. L., Chen, S. & Chen, J. Structural basis for substrate specificity in
the Escherichia coli maltose transport system. Proc. Natl Acad. Sci. USA 110,
18132–18137 (2013).
18. Mari, J. M., Xia, W., West, S. J. & Desjardins, A. E. Interventional
multispectral photoacoustic imaging with a clinical ultrasound probe for
discriminating nerves and tendons: an ex vivo pilot study. J. Biomed. Opt. 20,
110503 (2015).
19. van Oosten, M. et al. Real-time in vivo imaging of invasive- and biomaterial-
associated bacterial infections using fluorescently labelled vancomycin. Nat.
Commun. 4, 2584 (2013).
46. Sauvageot, N. et al. Enterococcus faecalis uses a PTS permease and a host
colonization-related ABC transporter for maltodextrin uptake. J. Bacteriol.
199, e00878 (2017).
47. Licht, A. et al. Structural and functional characterization of a maltose/
maltodextrin ABC transporter comprising a single solute binding domain
(MalE) fused to the transmembrane subunit MalF. Res. Microbiol. 170, 1–12
(2019).
20. Li, L. L. et al. Pathological-condition-driven construction of supramolecular
nanoassemblies for bacterial infection detection. Adv. Mater. 28, 254–262
(2016).
48. Dumont, E. et al. Mechanistic aspects of maltotriose-conjugate translocation
to the gram-negative bacteria cytoplasm. Life Sci. Alliance 2, e201800242
(2019).
21. Wang, Y. et al. Preclinical evaluation of photoacoustic imaging as a novel
noninvasive approach to detect an orthopaedic implant infection. J. Am. Acad.
Orthop. Surg. 25, S7–S12 (2017).
22. Tang, E. N., Nair, A., Baker, D. W., Hu, W. & Zhou, J. In vivo imaging of
infection using a bacteria-targeting optical nanoprobe. J. Biomed.
Nanotechnol. 10, 856–863 (2014).
23. Romero Pastrana, F. et al. Noninvasive optical and nuclear imaging of
Staphylococcus-specific infection with a human monoclonal antibody-based
probe. Virulence 9, 262–272 (2018).
24. Kwon, H.-Y. et al. Development of a universal fluorescent probe for gram-
positive bacteria. Angew. Chem. Int. Ed. Engl. 58, 8426–8431 (2019).
25. Zhou, J., Qi, G.-B. & Wang, H. A purpurin-peptide derivative for selective
killing of gram-positive bacteria via insertion into cell membrane. J. Mater.
Chem. B 4, 4855–4861 (2016).
26. Yao, J. et al. Multiscale photoacoustic tomography using reversibly switchable
bacterial phytochrome as a near-infrared photochromic probe. Nat. Methods
13, 67–73 (2015).
27. Chee, R. K. W., Li, Y., Zhang, W., Campbell, R. E. & Zemp, R. J. In vivo
photoacoustic difference-spectra imaging of bacteria using photoswitchable
chromoproteins. J. Biomed. Opt. 23, 106006 (2018).
28. Jiang, Y. et al. Violacein as a genetically-controlled, enzymatically amplified
and photobleaching-resistant chromophore for optoacoustic bacterial
imaging. Sci. Rep. 5, 11048 (2015).
29. Peters, L. et al. Phototrophic purple bacteria as optoacoustic in vivo reporters
of macrophage activity. Nat. Commun. 10, 1191 (2019).
49. Kurtz, S. M., Ong, K. L., Lau, E. & Bozic, K. J. Impact of the economic
downturn on total joint replacement demand in the United States: updated
projections to 2021. J. Bone Jt. Surg. Am. 96, 624–630 (2014).
50. Pitta, M. et al. Failure after modern total knee arthroplasty: a prospective study
of 18,065 knees. J. Arthroplast. 33, 407–414 (2018).
51. Fernández-Sampedro, M. et al. Accuracy of different diagnostic tests for early,
delayed and late prosthetic joint infection. BMC Infect. Dis. 17, 592 (2017).
52. Arciola, C. R., Montanaro, L. & Costerton, J. W. New trends in diagnosis and
control strategies for implant infections. Int J. Artif. Organs 34, 727–736
(2011).
53. Harris, D. L. G. et al. Rapid identification of Staphylococci from prosthetic
joint infections using MALDI-TOF mass-spectrometry. Int J. Artif. Organs 33,
568–574 (2010).
54. Deurenberg, R. H. et al. Application of next generation sequencing in clinical
microbiology and infection prevention. J. Biotechnol. 243, 16–24 (2017).
55. Tagini, F. & Greub, G. Bacterial genome sequencing in clinical microbiology: a
pathogen-oriented review. Eur. J. Clin. Microbiol. Infect. Dis. 36, 2007–2020
(2017).
56. van Belkum, A., Welker, M., Pincus, D., Charrier, J. P. & Girard, V. Matrix-
assisted laser desorption ionization time-of-flight mass spectrometry in
clinical microbiology: what are the current issues? Ann. Lab. Med. 37, 475–483
(2017).
57. Li, L. et al. Single-impulse panoramic photoacoustic computed tomography of
small-animal whole-body dynamics at high spatiotemporal resolution. Nat.
Biomed. Engl. 1, 977–11 (2017).
30. Ning, X. et al. Maltodextrin-based imaging probes detect bacteria in vivo with
high sensitivity and specificity. Nat. Mater. 10, 602–607 (2011).
31. Ning, X. et al. PET imaging of bacterial infections with fluorine-18-labeled
maltohexaose. Angew. Chem. Int. Ed. Engl. 53, 14096–14101 (2014).
32. Takemiya, K. et al. Novel PET and near infrared imaging probes for the
specific detection of bacterial infections associated with cardiac devices. JACC
Cardiovasc. Imaging 12, 875–886 (2019).
58. Merčep, E., Herraiz, J. L., Deán-Ben, X. L. & Razansky, D.
Transmission–reflection optoacoustic ultrasound (TROPUS) computed
tomography of small animals. Light Sci. Appl. 8, 1–12 (2019).
59. Kim, C., Erpelding, T. N., Jankovic, L. & Wang, L. V. Performance
benchmarks of an array-based hand-held photoacoustic probe adapted from a
clinical ultrasound system for non-invasive sentinel lymph node imaging.
Philos. Trans. R. Soc. A 369, 4644–4650 (2011).
33. Pang, X. et al. Bacteria-responsive nanoliposomes as smart sonotheranostics
60. Sivasubramanian, K. & Pramanik, M. High frame rate photoacoustic imaging
at 7000 frames per second using clinical ultrasound system. Biomed. Opt.
Express 7, 312–323 (2016).
34. Gowrishankar, G. et al. Investigation of 6-[¹8F]-fluoromaltose as a novel PET
tracer for imaging bacterial infection. PLoS ONE 9, e107951 (2014).
35. Namavari, M., Gowrishankar, G., Hoehne, A., Jouannot, E. & Gambhir, S. S.
Synthesis of [18F]-labelled maltose derivatives as PET tracers for imaging
bacterial infection. Mol. Imaging Biol. 17, 168–176 (2015).
61. Steinberg, I., Shiloh, L., Gannot, I. & Eyal, A. First-in-human study of bone
pathologies using low-cost and compact dual-wavelength photoacoustic
36. Gowrishankar, G. et al. Specific imaging of bacterial infection using 6ʹʹ -18F-
fluoromaltotriose: a second generation PET tracer targeting the maltodextrin
transporter in bacteria. J. Nucl. Med. 58, 1679–1684 (2017).
37. Khamsi, J., Ashmus, R. A., Schocker, N. S. & Michael, K. A high-yielding
synthesis of allyl glycosides from peracetylated glycosyl donors. Carbohydr.
Res. 357, 147–150 (2012).
38. Axer, A. et al. Harnessing the maltodextrin transport mechanism for targeted
bacterial imaging: structural requirements for improved in vivo stability in
tracer design. ChemMedChem 13, 241–250 (2018).
39. Deán-Ben, X. L. & Razansky, D. Portable spherical array probe for volumetric
real-time optoacoustic imaging at centimeter-scale depths. Opt. Express 21,
28062–28071 (2013).
40. Daoudi, K. et al. Handheld probe integrating laser diode and ultrasound
transducer array for ultrasound/photoacoustic dual modality imaging. Opt.
Express 22, 26365–26374 (2014).
Acknowledgements
Dr. Derek Holman for providing training on the mouse wound model. Dr. Mohammad
Namavari for providing azide-6″-maltotriose intermediate. Dr. Hui-Yen Chuang for
assisting with bacterial culture. Dr. Jonathan Hardy and Dr. Christopher H. Contag for
providing the Xen 36 strains. The Stanford University Small Animal Imaging Facility for
training and help with small-animal imaging studies. Dr. Naoki Nishio, Dr. Nynke S. van
den Berg, Dr. Katheryne Wilson, and Dr. Eben Rosenthal for assistance and allowing us
to use their Vevo3100 LAZR system.
Author contributions
A.Z. conducted all the synthesis and characterization of the probes, designed, carried out
and analyzed experiments, and wrote the manuscript. G.G. designed and carried out
experiments and contributed to the writing of the manuscript. I.S. wrote the code for PA
imaging analysis and assisted with PA image analysis, production, scientific discussion,
and manuscript editing. T.H. assisted with compound stability and metabolism studies
and manuscript editing. S.S.G. designed and supervised the project and contributed to
the writing of the manuscript.
41. Kim, J. et al. Programmable real-time clinical photoacoustic and ultrasound
imaging system. Sci. Rep. 6, 35137 (2016).
42. Dippel, R. & Boos, W. The maltodextrin system of Escherichia coli:
metabolism and transport. J. Bacteriol. 187, 8322–8331 (2005).
43. Dutzler, R., Wang, Y. F., Rizkallah, P., Rosenbusch, J. P. & Schirmer, T. Crystal
structures of various maltooligosaccharides bound to maltoporin reveal a
specific sugar translocation pathway. Structure 4, 127–134 (1996).
44. Quiocho, F. A., Spurlino, J. C. & Rodseth, L. E. Extensive features of tight
oligosaccharide binding revealed in high-resolution structures of the
maltodextrin transport/chemosensory receptor. Structure 5, 997–1015 (1997).
Competing interests
S.S.G. declares competing financial interests with Visualsonics Inc. The rest of the
authors declare no competing interests.
12
N
A
T
U
R
E
C
O
M
M
U
N
I
C
A
T
I
O
N
S
|