l-t-Leucine-Catalyzed Asymmetric Aldol Reaction of Cyclic Ketones
Blackmond, A. Moran, M. Hughes, A. Armstrong, J. Am.
Chem. Soc. 2010, 132, 7598–7599.
[5] a) F. Orsini, F. Pelizzoni, M. Forte, R. Destro, P. Gariboldi,
Tetrahedron 1988, 44, 519–541; b) T. Kano, J. Takai, O. To-
kuda, K. Maruoka, Angew. Chem. Int. Ed. 2005, 44, 3055–
3057; c) T. Kano, O. Tokuda, J. Takai, K. Maruoka, Chem.
Asian J. 2006, 1–2, 210–215.
[6] a) A. Córdova, W. Zou, I. Ibrahem, E. Reyes, M. Engqvist,
W.-W. Liao, Chem. Commun. 2005, 3586–3588; b) W. Zou, I.
Ibrahem, P. Dziedzic, H. Sundén, A. Córdova, Chem. Com-
mun. 2005, 4946–4948; c) A. Bassan, W. Zou, E. Reyes, F.
Himo, A. Córdova, Angew. Chem. Int. Ed. 2005, 44, 7028–
7032; d) A. Córdova, W. Zou, P. Dziedzic, I. Ibrahem, E.
Reyes, Y. Xu, Chem. Eur. J. 2006, 12, 5383–5397.
[7] a) Z. Jiang, Z. Liang, X. Wu, Y. Lu, Chem. Commun. 2006,
2801–2803; b) X. Wu, Z. Jiang, H.-M. Shen, Y. Lu, Adv. Synth.
Catal. 2007, 349, 812–816; c) Z. Jiang, H. Yang, X. Han, J.
Luo, M. W. Wong, Y. Lu, Org. Biomol. Chem. 2010, 8, 1368–
1377.
TLC analysis. After 7 d, brine was added, and the mixture was
extracted with CH2Cl2 (3ϫ). The combined organic extracts were
dried with MgSO4 and concentrated in vacuo. The residue was
purified by column chromatography on silica gel (hexane/ethyl
acetate, gradient) to give the desired product.
Typical Procedure for Organocatalyzed Direct Aldol Reaction of Cy-
clooctanone: To a mixture of aldehyde (0.25 mmol) and l-t-leucine
(0.075 mmol) was added cyclooctanone (2.5 mmol), and the mix-
ture was stirred at room temperature. The reaction was monitored
by TLC analysis. After 10 d, brine was added, and the mixture was
extracted with CH2Cl2 (3ϫ). The combined organic extracts were
dried with MgSO4 and concentrated in vacuo. The residue was
purified by column chromatography on silica gel (hexane/ethyl
acetate, gradient) to give the desired product.
Supporting Information (see footnote on the first page of this arti-
cle): Characterization data including 1H and 13C NMR spectra for
aldol products, and HPLC traces for all results in Tables 2, 4, and
5.
[8] a) S. S. V. Ramasastry, H. Zhang, F. Tanaka, C. F. Barbas III,
J. Am. Chem. Soc. 2007, 129, 288–289; b) S. S. V. Ramasastry,
K. Albertshofer, N. Utsumi, F. Tanaka, C. F. Barbas III, An-
gew. Chem. Int. Ed. 2007, 46, 5572–5575; c) S. S. V. Ramasastry,
K. Albershofer, N. Utsumi, C. F. Barbas III, Org. Lett. 2008,
10, 1621–1624.
Acknowledgments
[9] X.-Y. Xu, Y.-Z. Wang, L.-Z. Gong, Org. Lett. 2007, 9, 4247–
This work was supported in part by a Grant for the High-Tech
Research Center Project from the Ministry of Education, Culture,
Sports, Science and Technology of Japan.
4249.
[10] X. Wu, Z. Ma, Z. Ye, S. Qian, G. Zhao, Adv. Synth. Catal.
2009, 351, 158–162.
[11] a) S. Luo, H. Xu, J. Li, L. Zhang, J.-P. Cheng, J. Am. Chem.
Soc. 2007, 129, 3074–3075; b) S. Luo, H. Xu, L. Zhang, J. Li,
J.-P. Cheng, Org. Lett. 2008, 10, 653–656; c) S. Luo, H. Xu, L.
Chen, J.-P. Cheng, Org. Lett. 2008, 10, 1775–1778; d) J. Li, S.
Luo, J.-P. Cheng, J. Org. Chem. 2009, 74, 1747–1750; e) S. Luo,
Y. Qiao, L. Zhang, J. Li, X. Li, J.-P. Cheng, J. Org. Chem. 2009,
74, 9521–9523; f) J. Li, N. Fu, X. Li, S. Luo, J.-P. Cheng, J.
Org. Chem. 2010, 75, 4501–4507.
[1] For recent reviews, see: a) P. L. Dalko, L. Moisan, Angew.
Chem. Int. Ed. 2004, 43, 5138–5176; b) B. List, Acc. Chem. Res.
2004, 37, 548–557; c) W. Notz, F. Tanaka, C. F. Barbas III,
Acc. Chem. Res. 2004, 37, 580–591; d) A. Berkessel, H. Gröger,
Asymmetric Organocatalysis, Wiley-VCH, Weinheim, 2005; e)
B. List, Chem. Commun. 2006, 819–824; f) S. Mukherjee, J. W.
Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471–5569;
g) G. Guillena, C. Najera, D. J. Ramn, Tetrahedron: Asymmetry
2007, 18, 2249–2293; h) X. Yu, W. Wang, Org. Biomol. Chem.
2008, 6, 2037–2046; i) X. H. Yu, W. Wang, Chem. Asian J.
2008, 3, 516–532; j) D. W. C. MacMillan, Nature 2008, 455,
304–308; k) V. Caprio, J. M. J. Williams, Catalysis in Asymmet-
ric Synthesis, 2nd ed., John Wiley and Sons, Chichester, 2009;
l) L.-W. Xu, J. Luo, Y. Lu, Chem. Commun. 2009, 1807–1821;
m) X. Liu, L. Lin, X. Feng, Chem. Commun. 2009, 6145–6158;
n) C. Grondal, M. Jeanty, D. Enders, Nat. Chem. 2010, 2, 167–
178; o) Y. Takemoto, Chem. Pharm. Bull. 2010, 58, 593–601.
[2] a) T. Itoh, M. Yokoya, K. Miyauchi, K. Nagata, A. Ohsawa,
Org. Lett. 2003, 5, 4301–4304; b) T. Itoh, M. Yokoya, K. Mi-
yauchi, K. Nagata, A. Ohsawa, Org. Lett. 2006, 8, 1533–1535;
c) T. Kanemitsu, Y. Yamashita, K. Nagata, T. Itoh, Synlett
2006, 1595–1597; d) T. Kanemitsu, Y. Yamashita, K. Nagata,
T. Itoh, Heterocycles 2007, 74, 199–203; e) K. Nagata, D. Sano,
T. Itoh, Synlett 2007, 547–550; f) D. Sano, K. Nagata, T. Itoh,
Org. Lett. 2008, 10, 1593–1595; g) K. Nagata, D. Sano, Y. Shi-
mizu, M. Miyazaki, T. Kanemitsu, T. Itoh, Tetrahedron: Asym-
metry 2009, 20, 2530–2536.
[12] S. Samanta, J. Liu, R. Dodda, C.-G. Zhao, Org. Lett. 2005, 7,
5321–5323.
[13] X. Ma, C.-S. Da, L. Yi, Y.-N. Jia, Q.-P. Guo, L.-P. Che, F.-C.
Wu, J.-R. Wang, W.-P. Li, Tetrahedron: Asymmetry 2009, 20,
1419–1424.
[14] a) S. Bahmanyar, K. N. Houk, H. J. Martin, B. List, J. Am.
Chem. Soc. 2003, 125, 2475–2479; b) K. N. Houk, P. H.-Y.
Cheong, Nature 2008, 455, 309–313.
[15] In order to study the selectivity of the reaction, we have calcu-
lated the stability of the enamine isomers in four cycloalk-
anones. In the case of cyclopentanone and cyclohexanone, the
heats of formation for the s-trans enamines, which were made
from the cycloalkanones and l-t-leucine, were lower than those
of s-cis enamines (for cyclopentanone: s-trans-enamine,
–105.10 kcal/mol; s-cis-enamine, –104.97 kcal/mol; for cyclo-
hexanone: s-trans-enamine, –115.25 kcal/mol; s-cis-enamine,
–114.88 kcal/mol). Thus, it was suggested that the s-trans-en-
amines were slightly more stable than the s-cis-enamines. In the
case of cycloheptanone and cyclooctanone, however, the heats
of formation for s-trans-enamines were higher than those
of s-cis enamines (for cycloheptanone: s-trans-enamine,
–118.12 kcal/mol; s-cis-enamine, –118.78 kcal/mol; for cyclooc-
tanone: s-trans-enamine, –121.89 kcal/mol; s-cis-enamine,
–122.77 kcal/mol). These results indicated that the s-cis-en-
amines were dominant intermediates to afford the syn selectiv-
ity. Although the other amino acids have the same tendency to
afford s-cis-enamine geometry with cycloheptanone or cyclooc-
tanone, the desired products were obtained in very low yields
because the reaction of the amino acid with aldehydes gives
rise to decomposition products.
[3] B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc. 2000,
122, 2395–2396.
[4] For recent examples of proline-catalyzed reactions, see: a) C.
Chandler, P. Galzerano, A. Michrowska, B. List, Angew. Chem.
Int. Ed. 2009, 48, 1978–1980; b) F. J. S. Duarte, E. J. Cabrita,
G. Frenking, A. G. Santos, Chem. Eur. J. 2009, 15, 1734–1746;
c) S. Chercheja, S. K. Nadakudity, P. Eilbracht, Adv. Synth.
Catal. 2010, 352, 637–643; d) P. Renzi, J. Overgaard, M. Bella,
Org. Biomol. Chem. 2010, 8, 980–983; e) S. Samanta, S. Perera,
C.-G. Zhao, J. Org. Chem. 2010, 75, 1101–1106; f) V. Jha, N. B.
Kondekar, P. Kumar, Org. Lett. 2010, 12, 2762–2765; g) D. G.
Received: October 16, 2010
Published Online: December 15, 2010
Eur. J. Org. Chem. 2011, 993–997
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
997