ORGANIC
LETTERS
2011
Vol. 13, No. 7
1812–1815
Rapid Construction of [5-6-7] Tricyclic
Ring Skeleton of Calyciphylline Alkaloid
Daphnilongeranin B
Chen Xu,† Zheng Liu,† Huifei Wang,† Bo Zhang,† Zheng Xiang,†,§ Xiaojiang Hao,*,‡ and
David Zhigang Wang*,†
Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology,
Shenzhen Graduate School of Peking University, Shenzhen University Town, Nanshan
District, Shenzhen, China 518055, and Kunming Institute of Botany, Chinese Academy
of Sciences, Kunming, China 650204
dzw@szpku.edu.cn haoxj@mail.kib.ac.cn
Received February 3, 2011
ABSTRACT
A concise photochemical [2 þ 2] cycloaddition-Grob fragmentation sequence sets the common tricyclic ring skeletons of the Calyciphylline
A-type alkaloids, particularly those in daphnilongeranins, daphniyunnines, and daphniglaucins.
Of the many fascinating natural products uncovered in
recent years, the Daphniphyllum class of alkaloids stood
out for their highly impressive structural diversities, stereo-
chemical complexities, and skeletal novelties. More than
200 members have been isolated from 13 species of the
genus Daphniphyllum.1 The biological functions and phar-
macological activities of these compounds have been
poorly studied so far due to their extremely limited natural
supply. These, however, wouldinvitefurtherinvestigations
since the relevant plant species themselves have long been
used in acclaimed traditional herbal medical formulations,
and several members had already been shown to have
meaningful cytotoxic2 and antioxidation3 properties and
enhancement effects on neurotrophic factor biosynthesis.4
Attracted by the synthetic challenges posed by these
structures, particularly those of the Daphniphyllum sub-
class Calyciphylline-type alkaloids5 including calyciphyl-
line A, daphnihlaucins, daphnilongeranins, and daphniyu-
nnines (Figure 1), we initiated a program aiming at total
syntheses of some members of this series of compounds.
Within this context, remarkably, as visualized by the
(4) (a) Saito, S.; Yahata, H.; Kubota, T.; Obara, Y.; Nakahata, N.;
Kobayashi, J. Tetrahedron 2008, 64, 1901–1908. (b) Roll, D. M.; Bisku-
piak, J. E.; Mayne, C. L.; Ireland, C. M. J. Am. Chem. Soc. 1986, 108,
6680–6682.
(5) (a) Di, Y. T.; He, H. P.; Ping, Y. L.; Li, Y. L.; Wu, L.; Hao, X. J. J.
Nat. Prod. 2006, 69, 1074–1076. (b) Mu, S. Z.; Li, C. S.; He, H. P.; Di,
Y. T.; Wang, Y.; Wang, Y. H.; Zhang, Z.; Lu, Y.; Zhang, L.; Hao, X. J.
† Shenzhen Graduate School of Peking University.
‡ Kunming Institute of Botany.
€
§ Current address: The Jack H. Skirball Center for Chemistry & Proteo-
mics, the Salk Institute for Biological Studies, 10010 N. Torrey Pines Road,
La Jolla, CA 92037-1099.
J. Nat. Prod. 2007, 70, 1628–1631. (c) Chen, X.; Zhan, Z. J.; Yue, J. M.
Helv. Chim. Acta 2005, 88, 854–860. (d) Yang, S. P.; Zhang, H.; Zhang,
C. R.; Cheng, H. D.; Yue, J. M. J. Nat. Prod. 2006, 69, 79–82. (e) Zhang,
H.; Yang, S. P.; Fan, C. Q.; Ding, J.; Yue, J. M. J. Nat. Prod. 2006, 69,
553–557. (f) Zhang, C. R.; Liu, H. B.; Dong, S. H.; Zhu, J. Y.; Wu, Y.;
Yue, J. M. Org. Lett. 2009, 11, 4692–2695. (g) Morita, H.; Kobayashi, J.
Org. Lett. 2003, 5, 2895–2898. (h) Takatsu, H.; Morita, H.; Shen, Y. C.;
Kobayashi, J. Tetrahedron 2004, 60, 6279–6284. (i) Yahata, H.; Kubota,
T.; Kobayashi, J. J. Nat. Prod. 2009, 72, 148–151. (j) Luo, D. Q.; Zhu,
W. L.; Yang, X. L.; Liang, S. J.; Cao, Z. R. Helv. Chim. Acta 2010, 93,
1209–1215.
(1) For a comprehensive overview, see: Kobayashi, J.; Kubota, T.
Nat. Prod. Rep. 2009, 26, 936–962.
(2) (a) Morita, H.; Kobayashi, J. Tetrahedron 2002, 58, 6637–6641.
(b) Kobayashi, J.; Ueno, S.; Morita, H. J. Org. Chem. 2002, 67, 6546–
6549. (c) Zhang, Y.; He, H. P.; Di, Y. T.; Mu, S. Z.; Wang, Y. H.; Wang,
J. S.; Li, C. S.; Kong, N. C.; Gao, S.; Hao, X. J. Tetrahedron Lett. 2007,
48, 9104–9107.
(3) Yamamura, S.; Hirata, Y. Tetrahedron Lett. 1974, 15, 2849–2852.
r
10.1021/ol200312q
Published on Web 03/09/2011
2011 American Chemical Society