R. J. Carreira, M. S. Diniz and J. L. Capelo
CONCLUSIONS
Acknowledgements
Ricardo J. Carreira acknowledges the doctoral grant SRFH/
BD/28563/2006 from FCT (Science and Technological
Foundation) of Portugal. The University of Vigo is
acknowledged for financial support under projects INOU/
UVIGO/K919/2009 and INOU/UVIGO/K914/2009. Xunta
de Galicia, Spain, is acknowledged by the Isidro Parga Pondal
Program (J. L. Capelo) and for financial support given
The results obtained show that the ultrasonic probe is
capable of accelerating the labeling reaction from 12 h,
the classic overnight methodology, to only 120 s without
compromising the labeling efficiency. Yet, the labeling
degree, i.e. the percentage of double 18O-labeled peptides,
was lower than that obtained with the classic methodology,
especially for larger peptides. It was also found that the use
of an ultrasonic probe is not recommended for the
acceleration of the labeling reaction when the ultrasonica-
tion time is higher than 120 s, at least with the conditions
reported here, because the aerosol formation, sample
overheating and uncontrolled secondary reactions, that
occur during ultrasonication at high intensities, compro-
mise the double 18O-incorporation at the carboxyl group of
the peptide.
´
under project 09CSA043383PR. Mario S. Diniz acknowledges
ˆ
program Ciencia 2008 from FCT/MCTES.
REFERENCES
[1] M. J. MacCoss, D. L. Matthews. Anal. Chem. 2005, 77, 295A.
[2] A. P. Deleenheer, L. M. Thienpont. Mass Spectrom. Rev. 1992,
11, 249.
[3] S. E. Ong, M. Mann. Nat. Chem. Biol. 2005, 1, 252.
[4] S. Sechi, Y. Oda. Curr. Opin. Chem. Biol. 2003, 7, 70.
[5] M. Bantscheff, M. Schirle, G. Sweetman, J. Rick, B. Kuster.
Anal. Bioanal. Chem. 2007, 389, 1017.
[6] S. E. Ong, B. Blagoev, I. Kratchmarova, D. B. Kristensen, H.
Steen, A. Pandey, M. Mann. Mol. Cell. Proteomics 2002, 1, 376.
[7] S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, R.
Aebersold. Nat. Biotechnol. 1999, 17, 994.
[8] P. L. Ross, Y. L. N. Huang, J. N. Marchese, B. Williamson, K.
Parker, S. Hattan, N. Khainovski, S. Pillai, S. Dey, S. Daniels,
S. Purkayastha, P. Juhasz, S. Martin, M. Bartlet-Jones, F. He,
A. Jacobson, D. J. Pappin. Mol. Cell. Proteomics 2004, 3, 1154.
[9] M. Schnolzer, P. Jedrzejewski, W. D. Lehmann. Electropho-
resis 1996, 17, 945.
[10] X. D. Yao, A. Freas, J. Ramirez, P. A. Demirev, C. Fenselau.
Anal. Chem. 2001, 73, 2836.
[11] M. Miyagi, K. C. S. Rao. Mass Spectrom. Rev. 2007, 26, 121.
[12] C. Fenselau, X. D. Yao. J. Proteome Res. 2009, 8, 2140.
[13] X. Ye, B. Luke, T. Andresson, J. Blonder. Brief. Funct. Geno-
mics Proteomics 2009, 8, 136.
[14] A. J. Patwardhan, E. F. Strittmatter, G. C. David, R. D. Smith,
M. G. Pallavicini. Proteomics 2006, 6, 2903.
[15] L. Zang, D. P. Toy, W. S. Hancock, D. C. Sgroi, B. L. Karger. J.
Proteome Res. 2004, 3, 604.
[16] J. L. Capelo, R. J. Carreira, L. Fernandes, C. Lodeiro, H. M.
Santos, J. Simal-Gandara. Talanta 2010, 80, 1476.
[17] I. I. Stewart, T. Thomson, D. Figeys. Rapid Commun. Mass
Spectrom. 2001, 15, 2456.
[18] H. F. Storms, R. van der Heijden, U. R. Tjaden, J. van der
Greef. Rapid Commun. Mass Spectrom. 2006, 20, 3491.
[19] P. M. Angel, R. Orlando. Anal. Biochem. 2006, 359, 26.
[20] D. Lopez-Ferrer, J. L. Capelo, J. Vazquez. J. Proteome Res.
2005, 4, 1569.
[21] R. Rial-Otero, R. J. Carreira, F. M. Cordeiro, A. J. Moro, L.
Fernandes, I. Moura, J. L. Capelo. J. Proteome Res. 2007, 6,
909.
[22] R. J. Carreira, R. Rial-Otero, D. Lopez-Ferrer, C. Lodeiro, J. L.
Capelo. Talanta 2008, 76, 400.
[23] Data Explorer Software User’s Guide, version 4.0, section 3,
Applied Biosystems.
[24] X. D. Yao, A. Freas, J. Ramirez, P. A. Demirev, C. Fenselau.
Anal. Chem. 2004, 76, 2675.
[25] H. M. Santos, J. L. Capelo. Talanta 2007, 73, 795.
[26] D. Lopez-Ferrer, T. H. Heibeck, K. Petritis, K. K. Hixson, W.
Qian, M. E. Monroe, A. Mayampurath, R. J. Moore, M. E.
Belov, D. G. Camp, R. D. Smith. J. Proteome Res. 2008, 7, 3860.
[27] R. J. Carreira, F. M. Cordeiro, A. J. Moro, M. G. Rivas, R.
Rial-Otero, E. M. Gaspar, I. Moura, J. L. Capelo. J. Chroma-
togr. A 2007, 1153, 291.
Regarding the sonoreactor, the results obtained from
30 to 120 s were similar to the ones obtained with the
direct ultrasonication method, but in contrast to the
ultrasonic probe, as the ultrasonication time is increased,
higher labeling efficiencies and higher double labeling
yields are obtained. Furthermore, the sonoreactor techno-
logy has some advantages over the ultrasonic probe: (i) it
provides indirect and less intense ultrasonic energy,
preventing aerosol formation; (ii) no sample overheating
occurs, because the temperature of the water bath where
ultrasonication takes place can be controlled; and last
but not least (iii), the ultrasonication is performed in
sealed vials, preventing sample contamination. The results
achieved for the labeling degree (18O2 %) in just 15 min
of ultrasonication were similar to the ones obtained
previously with the overnight methodology. This was
further confirmed with the labeling results obtained for
ovalbumin.
When the ultrasonication was performed with different
enzyme-to-protein (E:P) ratios the results showed that the
labeling efficiency and the labeling degree were best with an
E:P ratio of 1:40 (w/w). However, for low concentration
protein samples, higher E:P ratios were required in order to
achieve an acceptable double labeling yield, even when the
classic methodology was performed.
Our results demonstrate that the isotopic labeling
reaction can be performed in simple protein samples in
only 15 min in a direct labeling approach using indirect
ultrasonication provided by the sonoreactor. No inter-
mediate drying steps are required in this workflow,
which facilitate on-line approaches for protein quantitation.
In addition, the sonoreactor has a higher sample through-
put than the ultrasonic probe, which minimizes the
sample treatment time and simplifies the overall workflow.
However, when applied to a complex protein sample
like human plasma, this technology was not capable
of promoting efficient double 18O-incorporation, thus
compromising protein quantitation. Therefore, in the
presence of this type of samples, two approaches can be
used: (i) the decoupled labeling procedure in which
peptides are double labeled in percentages higher than
95%;[36] or (ii) mathematical algorithms that measure the
effective 18O-incorporation rate due to variable enzyme
substrate specificity during the labeling reaction and correct
for the 18O-abundance.[37,38]
wileyonlinelibrary.com/journal/rcm
Copyright ß 2010 John Wiley & Sons, Ltd.
Rapid Commun. Mass Spectrom. 2011, 25, 75–87