The catalytic activity of 2 towards CO2/cyclohexene oxide
(CHO) copolymerization was investigated in neat CHO with
10 bar CO2 at 50 1C and a monomer/catalyst ratio of 1000/1.
For comparison, the catalytic activities of LZnH and
L0Al(Me)OH were tested as well, but both showed no catalytic
activity. This is not surprising for LZnH, since b-diketiminate
zinc complexes with methyl-substituents at the 2,6-aryl positions
were reported to be inactive in CO2/CHO copolymerization
reactions.10a,c In stoichiometric NMR-scale reactions,
L0Al(Me)OH also showed no reaction with CHO up to
100 1C, whereas the reaction with CO2 (1 atm) occurred with
decomposition of L0Al(Me)OH and considerable formation of
L0H. This is probably due to initial formation of the inter-
mediate L0Al(Me)CO3H, containing an acidic H-atom that
readily protonates the b-diketiminato ligand with subsequent
formation of L0H and Al(Me)CO3. A comparable reactivity is
known for the calcium complex [L0CaOH]2, also yielding L0H
and CaCO3.26 Unfortunately, LZnOAl(Me)L0 2 showed
no increased catalytic activity compared to LZnH and
L0Al(Me)OH. To investigate this inactivity in more detail,
reactions of 2 with CO2 and CHO were tested in NMR-scale
experiments in deuterated benzene. 2 showed no reaction with
CHO within the temperature range of 20–100 1C, whereas the
reaction with 1 atm CO2 resulted in a clean conversion of 2
into a product with a completely new set of 1H NMR signals,
indicating that incorporation of CO2 is feasible. The charac-
terization of this new complex is currently under investigation.
LZnOH 1, which was prepared by controlled hydrolysis of
LZnX (X = H, Me) with water in THF solution, reacts with
alkyl- and hydride-substituted main group and transition
metal complexes by OH/Y exchange reactions (Y = H, Me,
i-Bu) and subsequently forms LZnY, whereas the more
Brønsted acidic L0Al(Me)OH reacts with LZnH to form the
bimetallic complex L0Al(Me)OZnL 2.
8 S. Singh, V. Jancik, H. W. Roesky and R. Herbst-Irmer, Inorg.
Chem., 2006, 45, 949; S. Nembenna, H. W. Roesky, S. K. Mandal,
R. B. Oswald, A. Pal, R. Herbst-Irmer, M. Noltemeyer and
H.-G. Schmidt, J. Am. Chem. Soc., 2006, 128, 13056;
S. Nembenna, S. Singh, A. Jana, H. W. Roesky, Y. Yang,
H. Ye, H. Ott and D. Stalke, Inorg. Chem., 2009, 48, 2273;
Y. Yang, H. W. Roesky, P. G. Jones, C.-W. So, Z. Zhang,
R. Herbst-Irmer and H. Ye, Inorg. Chem., 2007, 46, 10860;
J. Chai, V. Jancik, S. Singh, H. Zhu, C. He, H. W. Roesky,
H.-G. Schmidt, M. Noltemeyer and N. S. Hosmane, J. Am. Chem.
Soc., 2005, 127, 7521.
9 M. H. Chisholm, J. C. Gallucci and K. Phomphrai, Inorg. Chem.,
2005, 44, 8004; A. P. Dove, V. C. Gibson, E. L. Marshall,
A. J. P. White and D. J. Williams, Dalton Trans., 2004, 570;
L. R. Rieth, D. R. Moore, E. B. Lobkovsky and G. W. Coates,
J. Am. Chem. Soc., 2002, 124, 15239; M. H. Chisholm,
J. C. Huffman and K. Phomphrai, J. Chem. Soc., Dalton Trans.,
2001, 222; B. J. O’Keefe, M. A. Hillmeyer and W. B. Tolman,
J. Chem. Soc., Dalton Trans., 2001, 2215; M. Cheng,
A. B. Attygalle, E. B. Lobkovsky and G. W. Coates, J. Am. Chem.
Soc., 1999, 121, 11583. For a review article see: J. Wu, T.-L. Yu,
C.-T. Chen and C.-C. Lin, Coord. Chem. Rev., 2006, 250, 602.
10 D. R. Moore, M. Cheng, E. B. Lobkovsky and G. W. Coates,
J. Am. Chem. Soc., 2003, 125, 11911; D. R. Moore, M. Cheng,
E. B. Lobkovsky and G. W. Coates, Angew. Chem., Int. Ed., 2002,
41, 2599; M. Cheng, D. R. Moore, J. J. Reczek, B. M.
Chamberlain, E. B. Lobkovsky and G. W. Coates, J. Am. Chem.
Soc., 2001, 123, 8738; B. Y. Liu, C. Y. Tian, L. Zhanq, W. D. Yan
and W. J. Zhanq, J. Polym. Sci., Part A: Polym. Chem., 2006, 44,
6243; M. Kroger, C. Folli, O. Walter and M. Doring, Adv. Synth.
Catal., 2006, 348, 1908.
11 R. C. Jeske, J. M. Rowley and G. W. Coates, Angew. Chem., Int.
Ed., 2008, 47, 6041.
12 D. F.-J. Piesik, S. Range and S. Harder, Organometallics, 2008, 27,
6178.
13 S. Schulz, T. Eisenmann, D. Blaser and R. Boese, Z. Anorg. Allg.
Chem., 2009, 635, 995; S. Schulz, T. Eisenmann, D. Schuchmann,
M. Bolte, M. Kirchner, R. Boese, J. Spielmann and S. Harder,
Z. Naturforsch., 2009, 64b, 1397.
14 J. Spielmann, D. Piesik, B. Wittkamp, G. Jansen and S. Harder,
Chem. Commun., 2009, 3455.
15 A. Looney, R. Han, I. B. Gorrell, M. Cornebise, K. Yoon,
G. Parkin and A. L. Rheingold, Organometallics, 1995, 14, 274.
16 S. S. Al-Juaid, N. H. Buttrus, C. Eaborn, P. B. Hitchcock,
A. T. L. Roberts, J. D. Smith and A. C. Sullivan, J. Chem. Soc.,
Chem. Commun., 1986, 908.
Notes and references
1 F. Meyer, R. Hempelmann, S. Mathur and M. Veith, J. Mater.
Chem., 1999, 9, 1755; R. C. Mehrotra, Coord. Chem. (IUPAC),
1981, 21, 113; V. G. Kessler, S. Gohil and S. Parola, Dalton Trans.,
2003, 4, 544.
2 H. W. Roesky, I. Haiduc and N. S. Hosmane, Chem. Rev., 2003,
103, 2579; T. Carofiglio, C. Floriani, M. Rosi, A. Chiesi-Villa and
C. Rizzoli, Inorg. Chem., 1991, 30, 3245; M. S. Rau, C. M.
Kretz, G. L. Geoffroy, A. L. Rheingold and B. S. Haggerty,
Organometallics, 1994, 13, 1624; H. Li, M. Eddaoudi, J. Plevert,
M. O’Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2000, 122, 12409.
3 B. G. Ueland, G. C. Lau, R. J. Cava, J. R. O’Brien and P. Schiffer,
Phys. Rev. Lett., 2006, 96, 027216.
17 G. Anantharaman and K. Elango, Organometallics, 2007, 26, 1089.
18 E. Jaime, A. N. Kneifel, M. Westerhausen and J. Weston,
J. Organomet. Chem., 2008, 693, 1027.
19 M. H. Chisholm, J. C. Gallucci and K. Phomphrai, Inorg. Chem.,
2002, 41, 2785; C. Amort, H. Kopacka, B. Bildstein, K. Wurst and
Z. Kristallogr, Z. Kristallogr. - New Cryst. Struct., 2004, 219, 331.
20 A. M. Arif, A. H. Cowley, R. A. Jones and S. U. Koschmieder,
J. Chem. Soc., Chem. Commun., 1987, 1319.
21 B. M. Bridgewater and G. Parkin, Inorg. Chem. Commun., 2001, 4,
126; R. Alsfasser, S. Trofimenko, A. Looney, G. Parkin and
H. Vahrenkamp, Inorg. Chem., 1991, 30, 4098; M. Ruf and
H. Vahrenkamp, Inorg. Chem., 1996, 35, 6571.
4 N. Wheatley and P. Kalck, Chem. Rev., 1999, 99, 3379; R.-J. Tao,
F.-A. Li, S.-Q. Zang, Y.-X. Cheng, Q.-L. Wang, J.-Y. Niu and
D.-Z. Liao, J. Coord. Chem., 2006, 59, 901.
5 C. Coperet, M. Chabanas, R. P. Saint-Arroman and J.-M. Basset,
Angew. Chem., Int. Ed., 2003, 42, 156.
22 The reactions were in situ monitored by 1H NMR spectroscopy
and the complexes identified by comparing the spectra with those
of the known complexes. LZn(i-Bu) was identified by its 1H NMR
spectrum, but we could not isolate a pure sample from the reaction
product mixture. Details are given in the ESIw.
6 G. Bai, S. Singh, H. W. Roesky, M. Noltemeyer and
H.-G. Schmidt, J. Am. Chem. Soc., 2005, 127, 3449; Y. Yang,
T. Schulz, M. John, Z. Yang, V. M. Jimenez-Perez, H. W. Roesky,
P. M. Gurubasavaraj, D. Stalke and H. Ye, Organometallics, 2008,
27, 769; P. M. Gurubasavaraj, S. K. Mandal, H. W. Roesky,
R. B. Oswald, A. Pal and M. Noltemeyer, Inorg. Chem., 2007, 46,
1056; P. M. Gurubasavaraj, H. W. Roesky, B. Nekoueishahraki,
A. Pal and R. Herbst-Irmer, Inorg. Chem., 2008, 47, 5324.
23 W. Kuran and M. Czernecka, J. Organomet. Chem., 1984, 263, 1.
24 The complex L0Zn–m-O–Al(Me)L0 couldn’t be isolated from the
reaction mixture due to similar solubilities of the reaction
products.
25 A CSD structural database search (version 5.31 incl. update
August 2010) on neutral complexes containing an oxo-bridged
Al–O–TM unit (TM = transition metal) revealed 21 entries
(mean value 157.31).
7 For
a
H. W. Roesky, Acc. Chem. Res., 2010, 43, 248.
very recent review article see: S. K. Mandal and
26 C. Ruspic, S. Nembenna, A. Hofmeister, J. Magull, S. Harder and
H. W. Roesky, J. Am. Chem. Soc., 2006, 128, 15000.
c
2678 Chem. Commun., 2011, 47, 2676–2678
This journal is The Royal Society of Chemistry 2011