ORGANIC
LETTERS
2011
Vol. 13, No. 8
2015–2017
Asymmetric Total Synthesis of Clavolonine
Kenji Nakahara, Kie Hirano, Ryota Maehata, Yasuyuki Kita,† and Hiromichi Fujioka*
Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka,
Suita, Osaka, 565-0871 Japan
Received February 9, 2011
ABSTRACT
The asymmetric total synthesis of clavolonine (1) has been achieved based on chiral auxiliary multiple-use methodology. Our synthetic route
features stereoselective transformations on the cyclohexane ring utilizing the steric environment of the chiral auxiliary and an intramolecular
Mannich reaction to construct the fused ring system.
The Lycopodium alkaloids have received significant atten-
tion because of their architectural complexity and wide-
ranging biological properties.1 Recently, the asymmetric total
synthesis of various structural types of Lycopodium alkaloids
have been achieved by many research groups.2 Clavolonine
(1) was first isolated in 1960 from the club moss Lycopodium
clavatum by Burnell and co-workers.3 This alkaloid is struc-
turally categorized into the lycopodine (2)4,5 class.1a Our
interest in the synthesis of 1 was stimulated by its intriguing
structure, a tetracyclic framework with six contiguous stereo-
genic centers (Figure 1), as well as potential anticholinesterase
activity.6 The development of a facile entry to 1 would set the
stage for allowing a total synthesis of other structurally
related alkaloids.7 To date, three total syntheses of 1 have
been reported. One was in racemic form,8 the other two were
in enantiomerically pure form.9
† Present address: College of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
(1) (a) Ma, X.; Gang, D. R. Nat. Prod. Rep. 2004, 21, 752. (b)
Hirasawa, Y.; Kobayashi, J.; Morita, H. Heterocycles 2009, 77, 679.
(c) Ayer, W. A.; Trifonov, L. S. In The Alkaloids; Cordell, G. A., Brossi,
A., Eds.; Academic Press: New York, 1994; Vol. 45, p 233. (d) Kobayashi,
J.; Morita, H. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New
York, 2005; Vol. 61, p 1.
(2) For recent reports of asymmetric synthesis of Lycopodium alka-
loids, see: (a) Ramharter, J.; Weinstabl, H.; Mulzer, J. J. Am. Chem. Soc.
2010, 132, 14338. (b) Nakamura, Y.; Bruke, A. M.; Kotani, S.; Ziller,
J. W.; Rychnovsky, S. D. Org. Lett. 2010, 12, 72. (c) Fischer, D. F.;
Sarpong, R. J. Am. Chem. Soc. 2010, 132, 5926. (d) Liau, B. B.; Shair,
M. D. J. Am. Chem. Soc. 2010, 132, 9594. (e) Altaman, R. A.; Nilsson,
B. L.; Overman, L. E.; de Alaniz, J. R.; Rohde, J. M.; Taupin, V. J. Org.
Chem. 2010, 75, 7519. (f) Canham, S. M.; France, D. J.; Overman, L. E.
J. Am. Chem. Soc. 2010, 132, 7876. (g) Yuan, C.; Chang, C.-T.; Axelrod,
A.; Siegel, D. J. Am. Chem. Soc. 2010, 132, 5924. (h) Nishimura, T.;
Unni, A. K.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2011, 133,
418.
Figure 1. Structures of clavolonine (1) and lycopodine (2).
As a part of our ongoing study on the development of
asymmetric reactions using C2-symmetric diols as chiral
auxiliaries, we have described
a
diastereoselective
(6) Ortega, M. R.; Agnese, A. M.; Cabrera, J. L. Phytomedicine 2004,
11, 539.
(3) (a) Burnell, R. H.; Taylor, D. R. Chem. Ind. 1960, 1239. (b)
Burnell, R. H.; Mootoo, B. S. Can. J. Chem. 1961, 39, 1090.
(7) A number of structurally related analogues have been isolated
(see ref 1a). In fact, Breit et al. converted 1 into the two natural products
(-)-deacetylfawcettiine and (þ)-acetylfawcettiine (see, ref 9b).
(8) Wenkert, E.; Broka, C. A. J. Chem. Soc., Chem. Commun. 1984,
714.
€
(4) (a) Bodeker, K. Justus Liebigs Ann. Chem. 1881, 208, 363. (b)
Achmatowicsz, O.; Uzieblo, W. Rocz Chem. 1938, 18, 88. (c) Ayer,
W. A.; Iverach, G. G. Tetrahedron Lett. 1962, 3, 87. (d) Rogers, D.;
Quick, A.; Hague, M. Acta Crystallogr. 1974, B30, 552. (e) Hague, M.;
Rogers, D. J. Chem. Soc., Perkin Trans. 2 1975, 93.
(5) For asymmetric synthesis of lycopodine, see: (a) Yang, H.; Carter,
R. G. J. Org. Chem. 2010, 75, 4929. (b) Yang, H.; Carter, R. G.;
Zakharov, L. N. J. Am. Chem. Soc. 2008, 130, 9238.
(9) (a) Evans, D. A.; Scheerer, J. R. Angew. Chem., Int. Ed. 2005, 44,
6038. (b) Laemmerhold, K. M.; Breit, B. Angew. Chem., Int. Ed. 2010,
49, 2367.
r
10.1021/ol200376z
2011 American Chemical Society
Published on Web 03/09/2011