Compared to the quinolone lactam binding motif of
2H-benzo[e][1,4]thiazin-3-one (6) (entry 1) the analogous
isoquinolone binding motif in 2H-benzo[e][1,4]thiazin-4(3H)-
one (12) (entry 2) was less suited for hydrogen bonding and
enantioselective sulfoxidation. The resulting sulfoxide 13 was
only produced in 13% ee. Presumably, a disfavoured steric
interaction of the benzo unit in 12 with the tert-butyl groups
at the salen prevents efficient binding. Consequently, the
homologous sulfide 1420 suffers from a similar steric clash
resulting in a low enantioselectivity for product 15. In stark
contrast, the other substrates 16,21 18,20 and 20 reacted with
good enantiocontrol. Given the fact that the groups adjacent
to the sulfur atom in sulfides 16 and 18 are both methylene
groups the enantioselectivities recorded for sulfoxides 17
(entry 4) and 19 (entry 5) are remarkable. As expected from
our initial consideration, the selectivity in this hydrogen-bond
mediated sulfoxidation relies exclusively on an efficient
binding but not on the size difference of the groups around
the sulfur atom. Substrate 20 was chosen to probe the
reactivity and selectivity in a sulfide, which is not part of a
ring. Also in this case (entry 6) formation of the respective
sulfoxide 21 proceeded with good enantioselectivity.
5 (a) W. Zhang, J. L. Loebach, S. R. Wilson and E. N. Jacobsen,
J. Am. Chem. Soc., 1990, 112, 2801–2803; (b) R. Irie, K. Noda,
Y. Ito, N. Matsumoto and T. Katsuki, Tetrahedron Lett., 1990, 31,
7345–7348.
6 Reviews: (a) T. Katsuki, Adv. Synth. Catal., 2002, 344, 131–147;
(b) P. G. Cozzi, Chem. Soc. Rev., 2004, 33, 410–421;
(c) J. F. Larrow and E. N. Jacobsen, Top. Organomet. Chem.,
2004, 6, 123–152; (d) E. M. McGarrigle and D. Gilheany, Chem.
Rev., 2005, 105, 1563–1602.
7 (a) T. Bach, H. Bergmann, B. Grosch, K. Harms and
E. Herdtweck, Synthesis, 2001, 1395–1405; (b) F. Voss and
T. Bach, Synlett, 2010, 1493–1496.
8 For a pertinent review on asymmetric catalysis by chiral hydrogen
bond donors, see: M. S. Taylor and E. N. Jacobsen, Angew. Chem.,
Int. Ed., 2006, 45, 1520–1543.
9 For recent studies on the directing effect of hydrogen bonds in
transition metal catalyzed reactions, see: (a) S. Jonsson,
´
F. G. J. Odille, P.-O. Norrby and K. Warnmark, Org. Biomol.
¨
Chem., 2006, 4, 1927–1948; (b) S. Das, G. W. Brudvig and
R. H. Crabtree, J. Am. Chem. Soc., 2008, 130, 1628–1637;
(c) Y. Lu, T. C. Johnstone and B. A. Arndtsen, J. Am. Chem.
Soc., 2009, 131, 11284–1285; (d) T. Smejkal, D. Gribkov, J. Geier,
M. Keller and B. Breit, Chem.–Eur. J., 2010, 16, 2470–2478 and
refs. cited therein.
10 For an enantioselective Ru(porphyrin)-catalysed epoxidation
reaction employing a similar construction principle but a different
scaffold, see: P. Fackler, C. Berthold, F. Voss and T. Bach, J. Am.
Chem. Soc., 2010, 132, 15911–15913.
11 (a) D. P. Curran, K.-S. Jeon, T. A. Heffner and J. Rebek Jr., J. Am.
Chem. Soc., 1989, 111, 9238–9240; (b) K.-S. Jeong, K. Parris,
P. Ballester and J. Rebek Jr., Angew. Chem., Int. Ed. Engl., 1990,
29, 555–556; (c) J. G. Stack, D. P. Curran, J. Rebek Jr. and
P. Ballester, J. Am. Chem. Soc., 1991, 113, 5918–5920;
(d) J. G. Stack, D. P. Curran, S. V. Geib, J. Rebek Jr. and
P. Ballester, J. Am. Chem. Soc., 1992, 114, 7007–7018.
12 (a) T. Bach, H. Bergmann and K. Harms, Angew. Chem., Int. Ed.,
2000, 39, 2302–2304; T. Bach, H. Bergmann and K. Harms,
Angew. Chem., 2000, 112, 2391–2393; (b) T. Bach, H. Bergmann,
B. Grosch and K. Harms, J. Am. Chem. Soc., 2002, 124,
7982–7990; (c) T. Bach, in Asymmetric Synthesis—The Essentials,
In summary, the enantioselective oxidation of sulfides 6, 12,
14, 16, 18 and 20 containing a lactam binding motif was
achieved by the chiral Mn(salen) catalyst 5, which exhibits a
chiral hydrogen bonding pocket. The hydrogen bonding event
occurs more than ten carbon–carbon bonds away from the
active metal centre. The directing effect of the hydrogen bonds
at the spatially remote chiral template is solely responsible for
the face differentiation.
This project was supported in part by the Deutsche
Forschungsgemeinschaft (Ba 1372-10) and by the Fonds der
Chemischen Industrie.
ed. S. Brase and M. Christmann, Wiley-VCH, Weinheim, 2006,
¨
pp. 166–170; (d) S. Breitenlechner, P. Selig and T. Bach, in Ernst
Schering Foundation Symposium Proceedings ‘Organocatalysis’, ed.
M. T. Reetz, B. List, S. Jaroch and H. Weinmann, Springer, Berlin,
Notes and references
2008, pp. 255–280; (e) C. Muller and T. Bach, Aust. J. Chem., 2008,
¨
1 Reviews: (a) I. Ferna
3651–3705; (b) J. Legros, J. R. Dehlic and C. Bolm, Adv. Synth.
Catal., 2005, 347, 19–31; (c) E. Wojaczynska and J. Wojaczynski,
Chem. Rev., 2010, 110, 4303–4356.
´
ndez and N. Khiar, Chem. Rev., 2003, 103,
62, 557–564.
13 (a) A. Bauer, F. Westkamper, S. Grimme and T. Bach, Nature,
¨
2005, 436, 1139–1140; (b) C. Muller, A. Bauer and T. Bach, Angew.
´
´
¨
Chem., Int. Ed., 2009, 48, 6640–6642.
2 (a) P. Pitchen and H. B. Kagan, Tetrahedron Lett., 1984, 25,
1049–1052; (b) P. Pitchen, E. Dunach, M. N. Deshmukh and
H. B. Kagan, J. Am. Chem. Soc., 1984, 106, 8188–8193; (c) F. Di
Furia, G. Modena and R. Seraglia, Synthesis, 1984, 325–326.
3 Recent examples for (a) Mn catalysis: M. Palucki, P. Hansen and
E. N. Jacobsen, Tetrahedron Lett., 1992, 33, 7111–7114;
C. Kokubo and T. Katsuki, Tetrahedron, 1996, 52, 13895–13900;
(b) V catalysis: C. Bolm and F. Bienewald, Angew. Chem., Int. Ed.
Engl., 1996, 34, 2640–2642; B. Pelotier, M. S. Anson,
I. B. Campbell, S. J. F. Macdonald, G. Priem and
R. F. W. Jackson, Synlett, 2002, 1055–1060; D. J. Weix and
J. A. Ellman, Org. Lett., 2003, 5, 1317–1320; C. Bolm, Coord.
Chem. Rev., 2003, 237, 245–256; A. Pordea, M. Creus, J. Panek,
C. Duboc, D. Mathis, M. Novic and T. R. Ward, J. Am. Chem.
Soc., 2008, 130, 8085–8088; (c) Fe catalysis: J. Legros and C. Bolm,
Angew. Chem., Int. Ed., 2003, 42, 5487–5489; J. Legros and
C. Bolm, Angew. Chem., Int. Ed., 2004, 43, 4225–4228; (d) Al
catalysis: K. Matsumoto, T. Yamaguchi and T. Katsuki, Chem.
Commun., 2008, 1704–1706.
14 M. Nielsen and K. V. Gothelf, J. Chem. Soc., Perkin Trans. 1,
2001, 2440–2444.
15 K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
1975, 16, 4467–4470.
16 J. Park, K. Lang, K. Abboud and S. Hong, J. Am. Chem. Soc.,
2008, 130, 16484–16485.
17 J. F. Larrow and E. N. Jacobsen, Org. Synth., 1997, 75, 1–6.
18 Single crystal X-ray structure determination: 10: colorless
fragment, C19H25NO4S, Mr = 363.47; orthorhombic, space group
P212121 (no. 19), a = 9.2813(2), b = 13.9405(3), c = 14.3069(3) A,
V = 1851.11(7) A3, Z = 4, l(CuKa) = 1.54180 A, m =
1.747 mmÀ1, rcalcd = 1.304 g cmÀ3, T = 123(1) K, F(000) =
776, 0.25
Â
0.30
Â
0.64 mm, ymax: 66.531, R1 = 0.0190
(3130 observed data), wR2 = 0.0476 (all 3167 data), GOF =
1.069, 327 parameters, Drmax/min = 0.17/À0.16 eAÀ3; CCDC
798187 (10); For more details see ESIw.
19 For an example for kinetic resolution of sulfoxides see: C. Drago,
L. Caggiano and R. F. W. Jackson, Angew. Chem., Int. Ed., 2005,
44, 7221–7223.
4 (a) H. Cotton, T. Elebring, M. Larsson, L. Li, H. So
S. von Unge, Tetrahedron: Asymmetry, 2000, 11, 3819–3825;
(b) M. Seenivasaperumal, H.-J. Federsel and K. J. Szabo, Adv.
¨
rensen and
20 H. Ishibashi, M. Uegaki, M. Sakai and Y. Takeda, Tetrahedron,
2001, 57, 2115–2120.
21 L. A. White and R. C. Storr, Tetrahedron, 1996, 52,
3117–3134.
´
Synth. Catal., 2009, 351, 903–919.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 2137–2139 2139