10.1002/anie.201808034
Angewandte Chemie International Edition
COMMUNICATION
[2]
a) D. J. Kempf, K. C. Marsh, J. F. Denissen, E. McDonald, S.
Vasavanonda, C. A. Flentge, B. E. Green, L. Fino, C. H. Park, X.-P. Kong,
N. E. Wideburg, A. Saldivar, L. Ruiz, W. M. Kati, H. L. Sham, T. Robins,
K. D. Stewart, A. Hsu, J. J. Plattner, J. M. Leonard, D. W. Norbeck, Proc.
Natl. Acad. Sci. U.S.A. 1995, 92, 2484-2488; b) J. P. Gaughran, , M. H.
Lai, D. R. Kirsch, S. J. Silverman, J. Bacteriol. 1994, 176, 5857-5860; c)
S. Yasuda, H. Kitagawa, M. Ueno, H. Ishitani, M. Fukasawa, M. Nishijima,
S. Kobayashi, K. Hanada, J. Biol. Chem. 2001, 276, 43994-44002.
a) S. M. Lait, D. A. Rankic, B. A. Keay, Chem. Rev. 2007, 107, 767-796,
and references therein; b) Z. Szakonyi, Á. Csőr, A. Csámpai, F. Fülöp,
Chem. Eur. J. 2016, 22, 7163-7173; c) M. S. I. E. Alami, M. A. E. Amrani,
F. Agbossou-Niedercorn, I. Suisse, A. Mortreux, Chem. Eur. J. 2015, 21,
1398-1413.
The preference of the opening of the π-complex at the 2-
position, hydrogen bonding of TsNCl-, and minimization of steric
interactions in the transition states, can be used for a model for
the aziridinations of other substrates (Scheme 4).
2,3,3-trisubstituted olefins behave like (Z)-2,3-disubtituted
olefins. The additional alkyl group is pointing into empty space
and the relative stability of the two transition states is only
governed by the 1,3-interaction (Scheme 4B). Therefore, the syn-
isomer is the main product of aziridination. In (E)-2,2,3-
trisubtituted olefins (Scheme 4C), the situation is different due to
the absence of a substituent (Z) to the hydroxy-substituted carbon.
Opening to the syn-isomer is disfavored due to the repulsive 1,2-
interaction shown and the anti-product is formed preferentially.
The selectivity observed experimentally is lower than in the two
types above and, thus, the 1,2-interaction seems to be weaker
than the 1,3-interaction.
Finally, the low selectivities for (E)-2,3-disubstituted and (Z)-
2,2,3-trisubstituted can also be deduced from the transition state
models. In the former case, there are no destabilizing interactions
in both transition states and, thus, aziridination occurs with low
selectivity. In the latter case, in both transition states repulsive
interactions are operating and the aziridination proceeds without
selectivity and is noticeably slower than for the other substitution
patterns.
[3]
[4]
[5]
a) Y. -F. Wang, T. Izawa, S. Kobayashi, M. Ohno, J. Am. Chem. Soc.
1982, 104, 6465-6466; b) W. S. McCall, T. A. Grillo, D. L. Comins, J. Org.
Chem. 2008, 73, 9744-9751.
a) N. S. Josephsohn, M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc.
2004, 126, 3734-3735; b) D. Enders, C. Grondal, M. Vrettou, G. Raabe,
Angew. Chem., Int. Ed. 2005, 44, 4079-4083; Angew. Chem. 2005, 117,
4147-4151; c) R. Millet, A. M. Träff, M. L. Petrus, J.-E. Bäckvall, J. Am.
Chem. Soc. 2010, 132, 15182-15184; d) M. Ueno, Y. Huang, A. Yamano,
S. Kobayashi, Org. Lett. 2013, 15, 2869-2871.
[6]
[7]
[8]
T. Kochi, T. P. Tang, J. A. Ellman, J. Am. Chem. Soc. 2002, 124, 6518-
6519.
P. A. Spreider, A. M. Haydl, M. Heinrich, B. Breit, Angew. Chem. Int. Ed.
2016, 55, 15569-15573; Angew. Chem. 2016, 128, 15798-15802.
a) G. Broustal, X. Ariza, J.-M. Campagne, J. Garcia, Y. Georges, A.
Marinetti, R. Robiette, Eur. J. Org. Chem. 2007, 4293-4297; b) J. S. Lee,
D. Kim, L. Lozano, S. B. Kong, H. Han, Org. Lett. 2013, 15, 554-557; c)
B. Tang, L. Wang, D. Menche, Synlett 2013, 24, 625-629; d) Y. Xie, K.
Yu, Z. Gu, J. Org. Chem. 2014, 79, 1289-1302.
In summary, we have developed a novel method for the
synthesis of N-tosylated 1,3-amino alcohols from allylic alcohols
in a two-step procedure. In the first step, α-hydroxy N-tosylated
aziridines are obtained from acyclic allylic alcohols with
unprecedented diastereoselectivity via the PTAB catalyzed
aziridination. The computational analysis of the addition reveals
that π-complexes of Br2 or BrCl are intermediates in the
aziridination and not the previously proposed bromonium ions.
Hydrogen bonding of TsNCl- by the hydroxy group is essential.
The diastereoselectivity of olefin addition is controlled by the steric
interactions between the substituents of the allylic alcohol in the
transition states of attack on the π-complex. The unprecedented
hydroxy directed hydrosilylation of the aziridines yields N-
tosylated 1,3-amino alcohols via an SN2-mechanism even at
tertiary C-atoms. The products may contain three contiguous
stereocenters. Such compounds are of high synthetic value and
difficult to prepare otherwise.
[9]
a) C. G. Espino, K. W. Fiori, M. Kim, J. D. Bois, J. Am. Chem. Soc. 2004,
126, 15378-15379; b) M. E. Harvey, D. G. Musaev, J. D. Bois, J. Am.
Chem. Soc. 2011, 133, 17207-17216; c) G. T. Rice, M. C. White, J. Am.
Chem. Soc. 2009, 131, 11707-11711.
[10] J. U. Jeong, B. Tao, I. Sagasser, H. Henniges, K. B. Sharpless, J. Am.
Chem. Soc. 1998, 120, 6844-6845.
[11] T. Ando, D. Kano, S. Minakata, I. Ryu, M. Komatsu, Tetrahedron, 1998,
54, 13485-13494.
[12] S. C. Coote, P. O’Brien, A. C. Whitwood, Org. Biomol. Chem. 2008, 6,
4299-4314.
[13] CCDC 1843674, 1843673, 1843676, 1843675 contain the
supplementary crystallographic data for the structures of 2a, 6, 10’, and
25, respectively. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
[14] a) D. Tanner, P. Somfai, Tertrahedron Lett. 1987, 28, 1211-1214; b) D.
Tanner, M. H. He, P. Somfai, Tetrahedron Lett. 1992, 48, 6069-6078.
[15] a) A. Gansäuer, M. Klatte, G. M. Brändle, J. Friedrich, Angew. Chem. Int.
Ed. 2012, 51, 8891-8894; Angew. Chem. 2012, 124, 9021-9024; b) Y. -Q.
Zhang, N. Funken, P. Winterscheid, A. Gansäuer, Angew. Chem. Int. Ed.
2015, 54, 6931-6934; Angew. Chem. 2015, 127, 7035-7038; c) G. H. D.
Schwarz, K. Zimmer, S. Klare, A. Meyer, E. Rojo-Wiechel, M. Bauer, R.
Sure, S. Grimme, O. Schiemann, R. A. Flowers, A. Gansäuer, Angew.
Chem. Int. Ed. 2016, 55, 7671-7675; Angew. Chem. 2016, 128, 7801-
7805; d) Y.-Q. Zhang, C. Poppel, A. Panfilova, F. Bohle, S. Grimme, A.
Gansäuer, Angew. Chem. Int. Ed. 2017, 56, 9719-9722; Angew. Chem.
2017, 129, 9851-9854; e) J. Wenz, H. Wadepohl, L. H. Gade, Chem.
Commun. 2017, 53, 4308-3409; f) J. Zhang, S. Park, S. Chang, Chem.
Commun. 2018, 54, 7243-7246.
Acknowledgements
We gratefully acknowledge generous support by the DFG in the
framework of the Leibniz prize to S.G.
Keywords: 1,3-amino alcohol • aziridination •
diastereoselectivity • hydrosilylation • reaction mechanism
[1]
a) M. Hamada, T. Takeuchi, S. Kondo, Y. Ikeda, H. Naganawa, K. Maeda,
Y. Okami, H. Umezawa, J. Antibiot. 1970, 23, 170-171; b) S. Kondo, S.
Shibahara, S. Takahashi, K. Maeda, H. Umezawa, M. Ohno, J. Am.
Chem. Soc. 1971, 93, 6305-6306; c) S. Yasuda, H. Kitagawa, M. Ueno,
H. Ishitani, M. Fukasawa, M. Nishijima, S. Kobayashi, K. Hanada, J. Biol.
Chem. 2001, 276, 43994-44002; d) R. W. Bates, K. Sa-Ei, Tetrahedron
2002, 58, 5957-5978.
[16] Z. Wang, Comprehensive Organic Name Reactions and Reagents, Wiley,
Hoboken, 2010, chap. 422, pp. 1880–1882.
[17] a) Z.-L. Song, C.-A. Fan, Y.-Q. Tu, Chem. Rev. 2011, 111, 7523–7556;
b) T. J. Snape, Chem. Soc. Rev. 2007, 36, 1823–1842.
[18] a) M. Mascal, N. Hafei, M. D. Toney, J. Am. Chem. Soc. 2010, 132,
10662–10664; b) K. Shibatomi, Y. Soga, A. Narayama, I. Fujisawa, S.
Iwasa, J. Am. Chem. Soc. 2012, 134, 9836–9839; c) S. V. Pronin, C. A.
This article is protected by copyright. All rights reserved.