M. Aydemir et al. / Inorganica Chimica Acta 367 (2011) 166–172
171
Table 7
Transfer hydrogenation results for substituted acetophenones with the catalyst system trans-[Ru((PPh2)2NCH2–C4H3S)2Cl2], 2.a
O
OH
OH
O
Cat
R
R
+
+
c
Entry
R
Time (h)
Conversion (%)b
TOF (hÀ1
)
Cat: Ru(II) complex, 2
1
2
3
4
5
4-F
4-Cl
4-Br
2-MeO
4-MeO
1
1
1
1
1
99
98
98
97
95
99
98
98
97
95
a
b
c
Catalyst (0.01 mmol), substrate (1.0 mmol), iso-PrOH (10 mL), NaOH (0.05 mmol), 82 °C, 1 h for 2, the concentration of acetophenone derivatives is 0.1 M.
Purity of compounds is checked by NMR and GC (three independent catalytic experiments), yields are based on methyl aryl ketone.
TOF = (mol product/mol Cat.) Â hÀ1
.
[7] C. Saluzzo, J. Breuzard, S. Pellet-Rostaing, M. Vallet, F.L. Guyader, M. Lemaire, J.
Organomet. Chem. 643–644 (2002) 98.
[8] N.W. Boaz, J.A. Ponasik, J. Large, E.S. Large, Tetrahedron: Asymm. 16 (2005)
2063.
[9] B. Pugin, H.U. Blaser, Adv. Synth. Catal. 348 (2006) 1743.
[10] J.J. Reedijk, J. Chem. Soc., Chem. Commun. (1996) 801.
[11] P. Bhattacharyya, T.Q. Ly, A.M.Z. Slawin, J.D. Woollins, Polyhedron 20 (2001)
1803.
substituents, such as F, Cl and Br to the para-position of the aryl
ring of the ketone decreased the electron density of the C@O bond
so that the activity was improved giving rise to easier hydrogena-
tion [53,54].
4. Conclusion
[12] A.M.Z. Slawin, M.B. Smith, J.D. Woollins, J. Chem. Soc. Rev., Dalton. Trans.
(1998) 1537.
In conclusion, the coordination geometry of the trans-
[13] M.S. Balakrishna, P.P. George, S.M. Mobin, Polyhedron 24 (2005) 475.
[Ru((PPh2)2NCH2–C4H3S)2Cl2],
2
and
cis-[Ru((PPh2)2NCH2–
_
[14] M. Aydemir, A. Baysal, N. Gürbüz, I. Özdemir, B. Gümgüm, S. Özkar, N. Çaylak,
C4H3S)2Cl2] were established by single crystal X-ray crystallogra-
phy. Complex 2 was investigated as precatalyst in the hydrogen
transfer reaction of acetophenone derivatives in basic iso-PrOH.
This compound has proved to be efficient catalyst in the transfer
hydrogenation reaction of ketones. Furthermore, performing the
reaction in air slowed down the reaction, but the conversion was
not affected in the air or addition of water. When we increased
the amount of water in the reaction system, the high conversion re-
mained intact.
L.T. Yıldırım, Appl. Organomet. Chem. 24 (2010) 17.
[15] H.-J. Chen, J.M. Barendt, R.C. Haltiwanger, T.G. Hill, A.D. Norman, Phosphorus,
Sulfur 26 (1986) 155.
[16] M. Aydemir, A. Baysal, F. Durap, B. Gümgüm, S. Özkar, L.T. Yıldırım, Appl.
Organomet. Chem. 23 (2009) 467.
[17] O. Akba, F. Durap, M. Aydemir, A. Baysal, B. Gümgüm, S. Özkar, J. Organomet.
Chem. 694 (5) (2009) 731.
[18] P. Bhattacharyya, J.D. Woollins, Polyhedron 14 (1995) 3367.
[19] A. Baysal, M. Aydemir, F. Durap, B. Gümgüm, S. Özkar, L.T. Yıldırım, Polyhedron
26 (2007) 3373.
[20] F. Durap, N. Biricik, B. Gümgüm, S. Özkar, W. Han Ang, Z. Fei, R. Scopelliti,
Polyhedron 27 (2008) 196.
[21] M. Aydemir, A. Baysal, G. Öztürk, B. Gümgüm, Appl. Organomet. Chem. 23
(2009) 108.
Acknowledgements
[22] R.A.W. Johnstone, A.H. Wilby, I.D. Entwistle, Chem. Rev. 85 (1985) 129.
[23] M. Yig˘it, B. Yig˘it, I. Özdemir, E. Çetinkaya, B. Çetinkaya, Appl. Organomet.
Chem. 20 (2006) 322.
[24] R. Noyori, M. Yamakawa, S. Hashiguchi, Acc. Chem. Res. 23 (1990) 345.
[25] S. Ram, R.E. Ehrenkaufer, Synthesis (1988) 91.
[26] S. Özkar, R.G. Finke, J. Am. Chem. Soc. 127 (2005) 4800.
[27] R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi, S.
Akutagawa, J. Am. Chem. Soc. 109 (1987) 5856.
Partial support from Dicle University (Project number: DÜAPK
05-FF-27), Turkish Academy of Sciences and Hacettepe University
Scientific Research Department (Project number: 04A602004) is
gratefully acknowledged.
[28] T. Ohkuma, H. Ooka, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 117
(1995) 2675.
Appendix A. Supplementary material
[29] H. Shimizu, I. Nagasaki, T. Satio, Tetrahedron 61 (2005) 5405.
[30] M. Aydemir, A. Baysal, N. Meric, B. Gümgüm, J. Organomet. Chem. 694 (2009)
2488.
[31] M. Aydemir, A. Baysal, Polyhedron 29 (2010) 1219.
[32] M. Aydemir, A. Baysal, N. Meric, C. Kayan, M. Tog˘rul, B. Gümgüm, Appl.
Organomet. Chem. 24 (2010) 215.
CCDC 770298 and 770299 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
ated with this article can be found, in the online version, at
[33] M. Aydemir, N. Meric, F. Durap, A. Baysal, M. Tog˘rul, J. Organomet. Chem. 695
(2010) 1392.
[34] M.A. Bennet, G.B. Robertson, A.K. Smith, J. Organomet. Chem. 43 (1972) C41.
[35] Enraf-Nonius, CAD-4 Express Software, Version 1.1 Enraf-Nonius, Delft,
Netherlands, 1993.
References
[36] XCAD4 K. Harms, S. Wocadlo, XCAD4, University of Marburg, Germany, 1995.
[37] SHELX: G.M. Sheldrick, Acta Crystallogr., Sect. A64 (2008) 112.
[38] WinGX: L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
[39] K. Song, H. Gao, F. Liu, J. Pan, L. Guo, S. Zai, Q. Vu, Eur. J. Inorg. Chem. (2009)
3016.
[40] A.D. Burrows, M.F. Mahon, M.T. Palmer, J. Chem. Soc., Dalton Trans. (2000) 1669.
[41] K.G. Gaw, M.B. Smith, A.M.Z. Slawin, New J. Chem. 24 (2000) 429.
[42] L. Dahlenburg, C. Kühlein, Inorg. Chim. Acta 361 (2008) 2785.
[43] P. Le Gendre, M. Offenbecher, C. Bruneau, P.H. Dixneuf, Tetrahedron: Asymm. 9
(1998) 2279.
[1] M.R.I. Zuburi, J.D. Woollins, Comments Inorg. Chem. 24 (2003) 189.
[2] Y. Wang, X. Li, K. Ding, Tetrahedron Lett. 43 (2002) 159.
[3] S. Urgaonkar, J.G. Verkade, Adv. Synth. Catal. 346 (2004) 611.
[4] D.P. Catsoulocas, B.R. Steele, G.A. Herapoulos, M. Micha-Screttas, C.G. Screttas,
Tetrahedron Lett. 44 (2003) 4575.
[5] J. Cheng, Y.H. Sun, F. Wang, M.J. Guo, J.H. Xu, Y. Pan, Z.G. Zhang, J. Org. Chem. 69
(2004) 5428.
[6] M.L. Clarke, D.J. Cole-Hamilton, J.D. Woollins, J. Chem. Soc., Dalton Trans.
(2001) 2721.