Pd2+ detection, which not only has potential applications in
human health and environmental protection, but also expands
the methods for palladium analysis in industrial production.
Financial support from the Ministry of Science and Technology
of China (NO. 2007CB936401) is gratefully acknowledged.
Notes and references
1 (a) J. Le Bars, U. Specht, J. S. Bradley and D. G. Blackmond,
Langmuir, 1999, 15, 7621; (b) T. Iwasawa, M. Tokunaga, Y. Obora
and Y. Tsuji, J. Am. Chem. Soc., 2004, 126, 6554; (c) M. Lafrance
and K. Fagnou, J. Am. Chem. Soc., 2006, 128, 16496.
2 (a) J. C. Ely, C. R. Neal, C. F. Kulpa, M. A. Schneegurt, J. A
Seidler and J. C. Jain, Environ. Sci. Technol., 2001, 35, 3816;
Fig. 3 (a) Fluorescent emission spectra and (b) the plot of the
fluorescence intensity I472 of 1 in the presence of different concentrations
of Pd2+ ions in THF ([1] = 4 ꢀ 10ꢁ6 M in repeat units, [Pd2+] = 0, 2, 4, 8,
12, 16, 20, 40, 60, 80, 120 ꢀ 10ꢁ6 M); excitation wavelength was 440 nm.
(b) F. Zereini, C. Wiseman and W. Puttmann, Environ. Sci.
¨
Technol., 2007, 41, 451; (c) S. Rauch, H. F. Hemond,
C. Barbante, M. Owari, G. M. Morrison, B. Peucker-Ehrenbrink
and U. Wass, Environ. Sci. Technol., 2005, 39, 8156.
3 (a) J. C. Wataha and C. T. Hanks, J. Oral Rehabil., 1996, 23, 309;
(b) International Programme on Chemical Safety. Palladium,
Environmental Health Criteria Series 226, World Health
Organization, Geneva, 2002; (c) J. Kielhorn, C. Melber,
D. Keller and I. Mangelsdorf, Int. J. Hyg. Environ. Health, 2002,
205, 417.
4 C. E. Garrett and K. Prasad, Adv. Synth. Catal., 2004, 346, 889.
5 (a) B. Dimitrova, K. Benkhedda, E. Ivanova and F. Adams,
J. Anal. At. Spectrom., 2004, 19, 1394; (b) C. Locatelli,
D. Melucci and G. Torsi, Anal. Bioanal. Chem., 2005, 382, 1567;
(c) K. Van Meel, A. Smekens, M. Behets, P. Kazandjian and
R. Van Grieken, Anal. Chem., 2007, 79, 6383.
6 (a) E. Unterreitmaier and M. Schuster, Anal. Chim. Acta, 1995,
309, 339; (b) K. Kubo, Y. Miyazaki, K. Akutso and T. Sakurai,
Heterocycles, 1999, 51, 965; (c) B. K. Pal and M. S. Rahman,
Mikrochim. Acta, 1999, 131, 139; (d) Y. J. Fang, H. Chen,
Z. X. Gao and X. Y. Jin, Indian J. Chem., Sect. A, 2002, 41, 521;
(e) B. Tang, H. Zhang and Y. Wang, Anal. Lett., 2004, 37, 1219;
(f) H. Huang, K. Wang, W. Tan, D. An, X. Yang, S. Huang,
Q. Zhai, L. Zhou and Y. Jin, Angew. Chem., Int. Ed., 2004, 43,
Fig. 4 (a) Emission spectra and (b) degree of fluorescence quenching
of 1 upon the addition of different metal cations (25 equiv. of Ag+
,
Ca2+, Cd2+, Co2+, Cu2+, Fe3+, Hg2+, Ni2+, Pd2+, Zn2+ and Pt4+
)
in THF solution. F0 and F denote fluorescence intensity of 1 before and
after adding different cations ([1] = 4 ꢀ 10ꢁ6 M in repeat units).
Excitation wavelength was 440 nm.
transitional metal ions such as Ag+, Ca2+, Cd2+, Co2+
,
Cu2+, Fe3+, Hg2+, Ni2+, Pd2+, Zn2+ and Pt4+. An
empirical diagonal rule was proposed for diagonally adjacent
elements of the second and third periods of the periodic table.
An extensive survey of metal ions suggests that polymer 1 is
also responsive to Pt4+ (Fig. 4b), but the extent of fluorescence
5635; (g) T. Schwarze, H. Muller, C. Dosche, T. Klamroth,
¨
¨
W. Mickler, A. Kelling, H. G. Lohmannsroben, P. Saalfrank and
¨
quenching by Pd2+ is about three times as effective as Pt4+
.
H. J. Holdt, Angew. Chem., Int. Ed., 2007, 46, 1671; (h) F. Song,
A. L. Garner and K. Koide, J. Am. Chem. Soc., 2007, 129, 12354;
(i) L. P. Duan, Y. F. Xu and X. H. Qian, Chem. Commun., 2008,
6339; (j) R. J. T. Houk, K. J. Wallace, H. S. Hewage and
E. V. Anslyn, Tetrahedron, 2008, 64, 8271; (k) A. L. Garner and
K. Koide, Chem. Commun., 2009, 86; (l) A. L. Garner, F. Song and
K. Koide, J. Am. Chem. Soc., 2009, 131, 5163; (m) H. Li, J. Fan,
J. Du, K. Guo, S. Sun, X. Liu and X. Peng, Chem. Commun., 2010,
46, 1079.
7 (a) T. M. Swager, Acc. Chem. Res., 1998, 31, 201;
(b) D. T. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev.,
2000, 100, 2537; (c) S. W. Thomas III, G. D. Joly and T. M. Swager,
Chem. Rev., 2007, 107, 1339.
8 M. Berggren, O. Inganas, J. Rasmusson, G. Gustafsson,
M. R. Andersson, O. Wennerstrom and T. Hjertberg, Nature,
1994, 372, 444.
9 W. R. Dawson and M. W. Windsor, J. Phys. Chem., 1968, 72, 3251.
10 E. C. Constable, R. P. G. Henney and D. A. Tocher, J. Chem. Soc.,
Dalton Trans., 1992, 2467.
Moreover, some ‘‘soft’’ metal ions such as Hg2+ and Ag+
cause virtually no fluorescence quenching of the polymer.
These results indicate that the sensor possesses an excellent
selectivity.
In conclusion, a novel conjugated polymer 1 has been
successfully synthesized by polymerization of 2,6-bis
(2-thienyl)pyridine with 1,4-bis(ethynyl)-2,5-bis(hexyloxy)benzene
via the Sonogashira coupling reaction. The UV-Vis absorbance
and fluorescence spectra have been investigated in THF. A
selective chromogenic behavior towards Pd2+ can be observed
by the naked eye, and Pd2+ ions can effectively quench the
fluorescence of the polymer with an excellent selectivity. All the
results demonstrate the polymer 1 can be used as an efficient
sensor with a high sensitivity and an excellent selectivity for
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 1731–1733 1733