M. Cui et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1064–1068
1067
Table 2
Biodistribution experiments of 13b and 14b in normal micea
Tissue
Time after injection (min)
30
2
10
60
120
13b Log D = 1.89 0.04
Blood
Heart
Liver
Spleen
Lung
5.81 0.95
6.88 1.03
9.31 0.96
2.78 0.41
8.27 2.03
6.56 0.63
0.65 0.09
2.55 0.81
2.07 0.19
2.85 0.25
13.85 1.25
2.51 0.3
3.17 0.13
4.12 0.62
0.44 0.02
1.64 0.27
1.22 0.38
1.35 0.4
3.84 0.56
12.49 1.85
2.98 0.36
4.31 0.48
4.67 0.71
0.60 0.04
2.26 0.52
12.79 2.97
2.13 0.21
2.66 0.4
3.66 0.52
0.36 0.06
8.63 2.09
1.21 0.23
1.50 0.34
2.24 0.53
0.19 0.03
Kidney
Brain
14b Log D = 1.70 0.02
Blood
Heart
Liver
Spleen
Lung
6.35 0.59
10.77 1.1
18.31 3.23
3.57 0.44
10.59 1.74
11.01 1.88
0.28 0.03
2.43 0.39
5.47 0.43
21.12 3.83
3.21 0.35
4.67 0.85
8.56 0.84
0.21 0.02
1.71 0.31
2.94 0.46
16.95 1.89
2.34 0.29
3.24 0.43
5.93 0.87
0.17 0.03
1.14 0.13
1.86 0.29
15.48 3.63
1.50 0.23
2.29 0.31
4.18 0.47
0.12 0.02
0.73 0.08
1.25 0.3
13.9 3.61
1.08 0.23
1.47 0.21
3.14 0.74
0.10 0.04
Kidney
Brain
a
All data are expressed as the mean percentage (n = 4) of the injected dose per gram of wet tissue (%ID/g) the standard deviation of the mean.
radiotracers were determined using a described procedure,32 Log D
values of 13b and 14b were 1.70 0.02 and 1.89 0.04, respec-
tively, which are in a good range for BBB penetration. As their
molecular weight does not exceed 600 Da, 13b and 14b are ex-
pected to pass through the BBB and show better brain uptake.
In vivo biodistribution experiment was carried out on ICR nor-
viding the Paraffin-embedded brain sections of Tg-C57 mouse
and Dr. Xiaoyan Zhang (College of Life Science, Beijing Normal Uni-
versity) for assistance in the in vitro neuropathological staining.
This work was funded by NSFC (20871021).
Supplementary data
mal mice (weight 18–22 g). A saline solution (100
lL) containing
Supplementary data (procedure for the preparation of 99mTc-
and Re-labeled DDNP derivatives, in vitro binding assay, fluores-
cent staining and biodistribution experiments) associated with this
article can be found, in the online version, at doi:10.1016/
7
l
Ci purified radiotracer was injected directly into the tail vein.
The mice were sacrificed at various time points after intravenous
administration. The biodistribution data are shown in Table 2.
Complex 13b displayed a medium initial brain uptake (0.65 %ID/g
at 2 min pi) and a reasonable washout of the radioactivity from
the brain (0.19 %ID/g at 2 h pi) while 14b showed a low brain up-
take (0.28 %ID/g at 2 min). Although the lipophilicity of 13b and
14b was in a moderate range and their molecular weight did not
exceed the threshold of 600 Da, they cannot cross the BBB to a suf-
ficient degree, since the brain uptake was also dependent on other
factors, such as hydrogen bonding, percentage of intact tracer
in vivo, etc. Compared with that of the 99mTc-labeled BTA reported
by our group,28 the initial brain uptake of these 99mTc-labeled
DDNP derivatives appears insufficient for in vivo imaging. There-
fore, further optimizations are needed to improve the pharmacoki-
netics of these 99mTc-labeled DDNP derivatives in vivo.
References and notes
1. Selkoe, D. J. JAMA 2000, 283, 1615.
2. Hardy, J. A.; Selkoe, D. J. Science 2002, 297, 353.
3. Mathis, C. A.; Wang, Y.; Klunk, W. E. Curr. Pharm. Des. 2004, 10, 1469.
4. Agdeppa, E. D.; Kepe, V.; Liu, J.; Flores-Torres, S.; Satyamurthy, N.; Petric, A.;
Cole, G. M.; Small, G. W.; Huang, S. C.; Barrio, J. R. J. Neurosci. 2001, 21, RC189.
5. Shoghi-Jadid, K.; Small, G. W.; Agdeppa, E. D.; Kepe, V.; Ercoli, L. M.; Siddarth,
P.; Read, S.; Satyamurthy, N.; Petric, A.; Huang, S. C.; Barrio, J. R. Am. J. Geriatr.
Psychiatry 2002, 10, 24.
6. Small, G. W.; Kepe, V.; Ercoli, L. M.; Siddarth, P.; Bookheimer, S. Y.; Miller, K. J.;
Lavretsky, H.; Burggren, A. C.; Cole, G. M.; Vinters, H. V.; Thompson, P. M.;
Huang, S. C.; Satyamurthy, N.; Phelps, M. E.; Barrio, J. R. N. Eng. J. Med. 2006,
355, 2652.
In conclusion, two 99mTc-labeled DDNP derivatives and their
corresponding rhenium complexes were successfully synthesized
through the conjugate approach. In experiments in vitro, the rhe-
nium complexes 13a and 14a showed lower affinities for Ab aggre-
gates than FDDNP. However, both of them can bind to Ab plaques
in the brain sections of AD transgenic mouse. Due to the similar
chemical and physical properties between rhenium and techne-
tium, the 99mTc-labeled tracers 13b and 14b are expected to retain
the binding affinity to Ab plaques. Despite the fact that 13b and
14b displayed moderate lipophilicity and their molecular weights
were less than 600 Da, in vivo biodistribution studies of 13b exhib-
ited a medium initial brain uptake while 14b showed lower brain
uptake. These results imply that these 99mTc-labeled DDNP deriva-
tives probably require further refinement in order to improve their
diffusion through the BBB and provide some useful information for
the development of 99mTc-labeled probes for b-amyloid imaging.
7. Mathis, C. A.; Wang, Y.; Holt, D. P.; Huang, G. F.; Debnath, M. L.; Klunk, W. E. J.
Med. Chem. 2003, 46, 2740.
8. Klunk, W. E.; Engler, H.; Nordberg, A.; Wang, Y.; Blomqvist, G.; Holt, D. P.;
Bergstrom, M.; Savitcheva, I.; Huang, G. F.; Estrada, S.; Ausen, B.; Debnath, M.
L.; Barletta, J.; Price, J. C.; Sandell, J.; Lopresti, B. J.; Wall, A.; Koivisto, P.; Antoni,
G.; Mathis, C. A.; Langstrom, B. Ann. Neurol. 2004, 55, 306.
9. Verhoeff, N. P.; Wilson, A. A.; Takeshita, S.; Trop, L.; Hussey, D.; Singh, K.; Kung,
H. F.; Kung, M. P.; Houle, S. Am. J. Geriatr. Psychiatry 2004, 12, 584.
10. Ono, M.; Wilson, A.; Nobrega, J.; Westaway, D.; Verhoeff, P.; Zhuang, Z. P.;
Kung, M. P.; Kung, H. F. Nucl. Med. Biol. 2003, 30, 565.
11. Kudo, Y.; Okamura, N.; Furumoto, S.; Tashiro, M.; Furukawa, K.; Maruyama, M.;
Itoh, M.; Iwata, R.; Yanai, K.; Arai, H. J. Nucl. Med. 2007, 48, 553.
12. Choi, S. R.; Golding, G.; Zhuang, Z. P.; Zhang, W.; Lim, N.; Hefti, F.; Benedum, T.
E.; Kilbourn, M. R.; Skovronsky, D.; Kung, H. F. J. Nucl. Med. 2009, 50, 1887.
13. Kung, H. F.; Choi, S. R.; Qu, W. C.; Zhang, W.; Skovronsky, D. J. Med. Chem. 2010,
53, 933.
14. Kung, M. P.; Hou, C.; Zhuang, Z. P.; Zhang, B.; Skovronsky, D.; Trojanowski, J. Q.;
Lee, V. M.; Kung, H. F. Brain Res. 2002, 956, 202.
15. Zhuang, Z. P.; Kung, M. P.; Wilson, A.; Lee, C. W.; Plossl, K.; Hou, C.; Holtzman,
D. M.; Kung, H. F. J. Med. Chem. 2003, 46, 237.
16. Newberg, A. B.; Wintering, N. A.; Plossl, K.; Hochold, J.; Stabin, M. G.; Watson,
M.; Skovronsky, D.; Clark, C. M.; Kung, M. P.; Kung, H. F. J. Nucl. Med. 2006, 47,
748.
Acknowledgments
17. Jurisson, S. S.; Lydon, J. D. Chem. Rev. 1999, 99, 2205.
We thank Dr. Lianfeng Zhang (Institute of Laboratory Animal
Science, Chinese Academy of Medical Sciences and Comparative
Medicine Center of Peking Union Medical College) for kindly pro-
18. Hom, R. K.; Katzenellenbogen, J. A. Nucl. Med. Biol. 1997, 24, 485.
19. Zhen, W.; Han, H.; Anguiano, M.; Lemere, C. A.; Cho, C. G.; Lansbury, P. T. J. Med.
Chem. 1999, 42, 2805.