stereoselective synthesis of the diastereomeric syn-β-hy-
droxyallylsilane isomers, and especially enantioselective
syntheses of the syn isomers,5e,7f largely remains an un-
solved problem due to the facile isomerization of (Z)- and
(E)-γ-silylallylmetal reagents.4,9,10 Therefore, develop-
ment of a stereocontrolled method for synthesis of chiral,
nonracemic (Z)-γ-silylallylmetal reagents and the corre-
sponding syn-β-hydroxyallylsilanes via enantioselective
aldehyde allylation remains an important goal. Accord-
ingly, we have developed and report herein a simple, one
step, diastereo- and enantioselective synthesis of syn-β-
hydroxyallylsilanes via a highly stereoselective allene hy-
droboration-aldehyde allylboration reaction sequence.
We recently reported that hydroboration of allenylstan-
nane 1 with diisopinocampheylborane [(dIpc)2BH] initially
forms (Z)-γ-stannylallylborane 2 as the kinetic product,
and that 2 isomerizes rapidly through a highly diastereo-
selective 1,3-boratropic shift to give the thermodynami-
cally stable R-stannylallylborane 3 (eq 1, Figure 1).11d
Subsequent allylboration of aldehydes with 3 gave (E)-
δ-stannyl-homoallylic alcohols 4 in good yields and
excellent enantioselectivities. With the objective to
synthesize the potentially environmentally benign (E)-
δ-silyl-homoallylic alcohols 6, we decided to study the
hydroboration of allenylsilane 512 (eq 2, Figure 1).
Figure 1. Hydroboration of allenylstannane 1 and planned
hydroboration of allenylsilane 2 with (dIpc)2BH.
In initial experiments, treatment of allenylsilane 5 with
(dIpc)2BHintoluene at-40°C for5 h followedbyaddition
of hydrocinnamaldehyde at -78 °C provided the β-hydro-
xyallylsilane 7a in 76% yield, 87% ee, and 14:1 d.s. and not
the originally targeted homoallylic alcohol 6(entry 1, Table 1).
1
After careful comparison of the H NMR spectra of the
reaction product with the data reported in the literature for
7a,5e,7f the major product was determined to be the syn-
β-hydroxyallylsilane diastereomer (7a). The minor pro-
duct is the anti- isomer 8a. Application of this procedure to
the (Z)-γ-silylallylboration of a variety of other aldehydes
(entries 2-6, Table 1) provided syn-β-hydroxyallylsilanes
7b-7f in 67-80% yields with g12:1 diastereoselectivities
and 84-87% ee. The absolute stereochemistry of the
secondary hydroxyl groups of 7a-7f were assigned by
using the modified Mosher ester analysis.13 The regioiso-
meric (E)-δ-silyl-homoallylic alcohols 6 were not observed
in these experiments.
(7) For selected synthetic applications of β-hydroxyallylsilanes: (a)
Micalizio, G. C.; Roush, W. R. Org. Lett. 2000, 2, 461. (b) Roush, W. R.;
Dilley, G. J. Synlett 2001, 955. (c) Heo, J.-N.; Micalizio, G. C.; Roush,
W. R. Org. Lett. 2003, 5, 1693. (d) Shotwell, J. B.; Roush, W. R. Org.
Lett. 2004, 6, 3865. (e) Tinsely, J. M.; Roush, W. R. J. Am. Chem. Soc.
2005, 127, 10818. (f) Tinsley, J. M.; Mertz, E.; Chong, P. Y.; Rarig, R.-A.
F.; Roush, W. R. Org. Lett. 2005, 7, 4245. (g) Mertz, E.; Tinsley, J. M.;
Roush, W. R. J. Org. Chem. 2005, 70, 8035. (h) Va, P.; Roush, W. R. J.
Am. Chem. Soc. 2006, 128, 15960. (i) Huh, C. W.; Roush, W. R. Org.
Lett. 2008, 10, 3371.
(8) For other selected applications of β-hydroxyallylsilanes: (a) Pa-
terson, I.; Findlay, A. D.; Anderson, E. A. Angew. Chem., Int. Ed. 2007,
46, 6699. (b) Kishi, N.; Maeda, T.; Mikami, K.; Nakai, T. Tetrahedron
1992, 48, 4087. (c) Vincent, G.; Mansfield, D. J.; Vors, J.-P.; Ciufolini,
M. A. Org. Lett. 2006, 8, 2791. (d) Beignet, J.; Jervis, P. J.; Cox, L. R. J.
Org. Chem. 2008, 73, 5462. (e) Peroche, S.; Remuson, R.; Gelas-Mialhe,
Y.; Gramain, J. C. Tetrahedron Lett. 2001, 42, 4617. (f) Ducray, R.;
Ciufolini, M. A. Angew. Chem., Int. Ed. 2002, 41, 4688.
The diastereoselectivity of this reaction sequence proved
to be highly dependent on experimental conditions. When
the hydroboration of 5 was performed at -20 °C followed
by addition of hydrocinnamaldehyde at -78 °C, a 2:1
mixture of syn- and anti-β-hydroxyallylsilanes 7a and 8a
was obtained in 81% yield. Similarly, when the hydro-
boration step was carried out at-30°C, a 3:1 mixture of 7a
and 8a was obtained in 77% yield. Hydroboration of 5 at
-40 °C for 12 h also led to the formation of a 5:1 mixture
of 7a and 8a. When the hydroboration step was carried
out at temperatures below -40 °C (e.g., -50 °C for 5 h),
the subsequent allylboration of hydrocinnamaldehyde at
-78 °Cprovided7a as the only product, albeit in diminished
yield (24%), owing to incomplete allene hydroboration.
These results indicate thatat temperaturesbelow -40°C
the kinetic hydroboration adduct 9Z, produced in the reac-
tion of 5 with (dIpc)2BH, does not rapidly isomerize to the
thermodynamically more stable allylborane 9E (Scheme 1).
While the 1,3-boratropic shifts of the (dIpc)2B- group is
known to be slow for γ,γ-disubstituted allylboranes,11b
this kinetically controlled hydroboration of allenylsilane 5
represents a rare case that a (Z)-γ-substituted allylborane
(9) (a) Hancock, K. G.; Kramer, J. D. J. Am. Chem. Soc. 1973, 95,
6463. (b) Kramer, G. W.; Brown, H. C. J. Organomet. Chem. 1977, 132,
9. (c) Hoffmann, R. W.; Zeiss, H. J. J. Org. Chem. 1981, 46, 1309. (d)
Henriksen, U.; Snyder, J. P.; Halgren, T. A. J. Org. Chem. 1981, 46,
3767. (e) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc.
1985, 107, 2564. (f) Wang, K. K.; Gu, Y. G.; Liu, C. J. Am. Chem. Soc.
1990, 112, 4424. (g) Gu, Y. G.; Wang, K. K. Tetrahedron Lett. 1991, 32,
3029. (h) Brown, H. C.; Narla, G. J. Org. Chem. 1995, 60, 4686. (i) Narla,
G.; Brown, H. C. Tetrahedron Lett. 1997, 38, 219. (j) Fang, G. Y.;
Aggarwal, V. K. Angew. Chem.; Int. Ed. 2007, 46, 359. (k) Canales, E.;
ꢀ
Gonzalez, A. Z.; Soderquist, J. A. Angew. Chem.; Int. Ed. 2007, 46, 397.
ꢀ
ꢀ
(l) Gonzalez, A. Z.; Roman, J. G.; Alicea, E.; Canales, E.; Soderquist,
J. A. J. Am. Chem. Soc. 2009, 131, 1269.
(10) One notable exception to the rapid isomerization of (Z)-and (E)-
crotylborane isomers has been reported by Soderquist: Burgos, C. H.;
Canales, E.; Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2005, 127,
8044. Also see ref 5f.
(11) (a) Flamme, E. M.; Roush, W. R. J. Am. Chem. Soc. 2002, 124,
13644. (b) Chen, M.; Handa, M.; Roush, W. R. J. Am. Chem. Soc. 2009,
131, 14602. (c) Ess, D. H.; Kister, J.; Chen, M.; Roush, W. R. Org. Lett.
2009, 11, 5538. (d) Chen, M.; Ess, D. H.; Roush, W. R. J. Am. Chem. Soc.
2010, 132, 7881. (e) Stewart, P.; Chen, M.; Roush, W. R.; Ess, D. Org.
Lett. 201110.1021/ol2001599. (f) Kister, J.; Nuhant, P.; Lira, R.; Sorg, A.;
Roush, W. R. Org. Lett. 2011, in press.
(12) (a) Myers, A. G.; Zheng, B. Org. Synth. 1999, 76, 178. (b) Li, Z.;
Yang, C.; Zheng, H.; Qiu, H; Lai, G. J. Organomet. Chem. 2008, 693,
3771. (c) Fandrick, D. R.; Reeves, J. T.; Tan, Z.; Lee, H.; Song, J. J.; Yee,
N. K.; Senanayake, C. H. Org. Lett. 2009, 11, 5458.
(13) (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512. (b)
Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc.
1991, 113, 4092.
Org. Lett., Vol. 13, No. 8, 2011
1993