ORGANIC
LETTERS
2
011
Vol. 13, No. 9
358–2360
Metal-Free Direct Arylations of Indoles
and Pyrroles with Diaryliodonium Salts
2
Lutz Ackermann,* Monica Dell’Acqua, Sabine Fenner, Rub ꢀe n Vicente, and
Ren ꢀe Sandmann
Institut f u€ r Organische und Biomolekulare Chemie, Georg-August-Universit a€ t,
Tammannstrasse 2, 37077 G o€ ttingen, Germany
Received March 7, 2011
ABSTRACT
Direct arylations of indoles and pyrroles with differently substituted diaryliodonium salts were shown to efficiently proceed in the absence of metal
catalysts.
2
Direct arylations of otherwise unreactive CÀH bonds
have emerged in recent years as attractive alternatives to
traditional cross-coupling reactions with organometallic
indole derivatives has received significant attention, be-
cause this scaffold is omnipresent in biologically active
3
compounds and natural products. Remarkable progress
in metal-catalyzed direct arylations of electron-rich
1
reagents. Particularly, the direct functionalization of
(hetero)arenes was recently accomplished through the
use of diaryliodonium salts as arylating reagents.
2
b,4
Dur-
ing studies directed toward the development of ruthenium-
(
1) Select recent reviews on metal-catalyzed CÀH bond functionali-
zations: (a) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy,
J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890–931. (b) Willis, M. C.
Chem. Rev. 2010, 110, 725–748. (c) Ackermann, L.; Potukuchi, H. K.
Org. Biomol. Chem. 2010, 8, 4503–4513. (d) Daugulis, O. Top. Curr.
Chem. 2010, 292, 57–84. (e) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem.
Commun. 2010, 46, 677–685. (f) Colby, D. A.; Bergman, R. G.; Ellman,
J. A. Chem. Rev. 2010, 110, 624–655. (g) Fagnou, K. Top. Curr. Chem.
5
catalyzed CÀH bond functionalizations on heteroarenes
we observed that CÀH bond arylations of indoles and
(4) Merritt, E. A.; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48,
9052–9070.
2
010, 292, 35–56. (h) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-
Kreutzer, J.; Baudoin, O. Chem.;Eur. J. 2010, 16, 2654–2672. (i) Lei,
A.; Liu, W.; Liu, C.; Chen, M. Dalton Trans. 2010, 39, 10352–10361. (j)
Ackermann, L. Chem. Commun. 2010, 46, 4866–4877. (k) Lyons, T. W.;
Sanford, M. S. Chem. Rev. 2010, 110, 1147–1169. (l) Dudnik, A. S.;
Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49, 2096–2098. (m) Giri, R.;
Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38,
(5) Reviews: (a) Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010,
292, 211–229. (b) Ackermann, L. Pure Appl. Chem. 2010, 82, 1403–1413.
(6) For recent progress in direct arylations under transition-metal-
free reaction conditions, see: (a) Shirakawa, E.; Itoh, K.-I.; Higashino,
T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 15537–15539. (b) Sun, C.-
L.; Li, H.; Yu, D.-G.; Yu, M.; Zhou, X.; Lu, X.-Y.; Huang, K.; Zheng,
S.-F.; Li, B.-J.; Shi, Z.-J. Nat. Chem. 2010, 2, 1044–1049. (c) Liu, W.;
Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.; Wang, H.;
Kwong, F. Y.; Lei, A. J. Am. Chem. Soc. 2010, 132, 16737–16740 and
references cited therein. For a pioneering example, see: (d) Yanagisawa,
S.; Ueda, K.; Taniguchi, T.; Itami, K. Org. Lett. 2008, 10, 4673–4676.
For reviews, see:(e) Yanagisawa, S.; Itami, K. ChemCatChem 2011, 3,
DOI: 10.1002/cctc.201000431. (f) Leadbeater, N. E. Nat. Chem. 2010, 2,
1007–1009.
(7) For representative recent examples of metal-free arylations with
diaryliodonium salts, see: (a) Jalalian, N.; Ishikawa, E. E.; Silva, L. F.;
Olofsson, B. Org. Lett. 2011, 13, 1552–1555. (b) Dohi, T.; Ito, M.;
Yamaoka, N.; Morimoto, K.; Fujioka, H.; Kita, Y. Angew. Chem., Int.
Ed. 2010, 49, 3334–3337. (c) Morimoto, K.; Yamaoka, N.; Ogawa, C.;
Nakae, T.; Fujioka, H.; Dohi, T.; Kita, Y. Org. Lett. 2010, 12, 3804–
3807. (d) Eastman, K.; Baran, P. S. Tetrahedron 2009, 65, 3149–3154. (e)
Kita, Y.; Morimoto, K.; Ito, M.; Ogawa, C.; Goto, A.; Dohi, T. J. Am.
Chem. Soc. 2009, 131, 1668–1669. (f) Dohi, T.; Ito, M.; Morimoto, K.;
Iwata, M.; Kita, Y. Angew. Chem., Int. Ed. 2008, 47, 1301–1304 and
references cited therein. (g) See also ref 7 in the Supporting Information.
3
(
242–3272. (n) Kulkarni, A. A.; Daugulis, O. Synthesis 2009, 4087–4109.
o) Bellina, F.; Rossi, R. Tetrahedron 2009, 65, 10269–10310. (p)
Ackermann, L.; Vicente, R.; Kapdi, A. Angew. Chem., Int. Ed. 2009,
8, 9792–9826. (q) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q.
4
Angew. Chem., Int. Ed. 2009, 48, 5094–5115. (r) Thansandote, P.;
Lautens, M. Chem.;Eur. J. 2009, 15, 5874–5883. (s) Daugulis, O.;
Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074–1086. (t)
Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013–3039. (u) Satoh, T.; Miura,
M. Chem. Lett. 2007, 36, 200–205. (v) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174–238 and references cited therein.
(
2) (a) Joucla, L.; Djakovitch, L. Adv. Synth. Catal. 2009, 351, 673–
14. (b) Beck, E. M.; Gaunt, M. J. Top. Curr. Chem. 2010, 292, 85–121.
3) For select reviews on indole synthesis, see: (a) Cacchi, S.; Fabrizi,
7
(
G.; Goggiamani, A. Org. Biomol. Chem. 2011, 9, 641–652. (b) Kr u€ ger,
K.; Tillack, A.; Beller, M. Adv. Synth. Catal. 2008, 350, 2153–2167. (c)
Ackermann, L. Synlett 2007, 507–526. (d) Humphrey, G. R.; Kuethe,
J. T. Chem. Rev. 2006, 106, 2875–2911. (e) Cacchi, S.; Fabrizi, G. Chem.
Rev. 2005, 105, 2873–2920. (f) Horton, D. A.; Bourne, G. T.; Smythe,
M. L. Chem. Rev. 2003, 103, 893–930.
1
0.1021/ol200601e r 2011 American Chemical Society
Published on Web 04/12/2011