Journal of Chemical & Engineering Data
Article
(19) Gardas, R. L.; Coutinho, J. A. Group contribution methods for the
prediction of thermophysical and transport properties of ionic liquids.
AIChE J. 2009, 55, 1274−1290.
density coefficients A0 and A1 and DSC thermograms of
ILs at various temperatures. (PDF)
(20) Ghanem, O. B.; Papaiconomou, N.; Abdul Mutalib, M. I.; Viboud,
AUTHOR INFORMATION
Corresponding Authors
195577289.
́ ̂
S.; El-Harbawi, M.; Uemura, Y.; Gonfa, G.; Azmi Bustam, M.; Leveque,
■
J.-M. Thermophysical properties and acute toxicity towards green algae
and Vibrio fischeri of amino acid-based ionic liquids. J. Mol. Liq. 2015,
212, 352−359.
́ ̂
(21) Ben Ghanem, O.; Mutalib, M. A.; Leveque, J.-M.; Gonfa, G.; Kait,
C. F.; El-Harbawi, M. Studies on the Physicochemical Properties of
Ionic Liquids Based On 1-Octyl-3-methylimidazolium Amino Acids. J.
Chem. Eng. Data 2015, 60, 1756−1763.
Notes
The authors declare no competing financial interest.
́
́
(22) Gomez, E.; Calvar, N.; Domínguez, A.; Macedo, E. A. Thermal
Analysis and Heat Capacities of 1-Alkyl-3-methylimidazolium Ionic
Liquids with NTf2−, TFO−, and DCA−Anions. Ind. Eng. Chem. Res.
2013, 52, 2103−2110.
REFERENCES
■
(1) Kim, K.-S.; Shin, B.-K.; Lee, H. Physical and electrochemical
properties of 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methyl-
imidazolium iodide, and 1-butyl-3-methylimidazolium tetrafluorobo-
rate. Korean J. Chem. Eng. 2004, 21, 1010−1014.
(2) Muhammad, N.; Man, Z.; Ziyada, A. K.; Bustam, M. A.; Mutalib, M.
A.; Wilfred, C. D.; Rafiq, S.; Tan, I. M. Thermophysical properties of
dual functionalized imidazolium-based ionic liquids. J. Chem. Eng. Data
2012, 57, 737−743.
(23) Rocha, M. A.; Neves, C. M.; Freire, M. G.; Russina, O.; Triolo, A.;
Coutinho, J. o. A.; Santos, L. M. Alkylimidazolium based ionic liquids:
impact of cation symmetry on their nanoscale structural organization. J.
Phys. Chem. B 2013, 117, 10889−10897.
(24) Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X. Physical properties of
ionic liquids: database and evaluation. J. Phys. Chem. Ref. Data 2006, 35,
1475−1517.
(3) Lethesh, K. C.; Van Hecke, K.; Van Meervelt, L.; Nockemann, P.;
Kirchner, B.; Zahn, S.; Parac-Vogt, T. N.; Dehaen, W.; Binnemans, K.
Nitrile-functionalized pyridinium, pyrrolidinium, and piperidinium ionic
liquids. J. Phys. Chem. B 2011, 115, 8424−8438.
(25) Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.;
Gratzel, M. Hydrophobic, highly conductive ambient-temperature
̈
molten salts. Inorg. Chem. 1996, 35, 1168−1178.
(26) Dzyuba, S. V.; Bartsch, R. A. Influence of structural variations in 1-
alkyl (aralkyl)-3-methylimidazolium hexafluorophosphates and bis
(trifluoromethylsulfonyl) imides on physical properties of the ionic
liquids. ChemPhysChem 2002, 3, 161−166.
(4) Lethesh, K. C.; Parmentier, D.; Dehaen, W.; Binnemans, K.
Phenolate platform for anion exchange in ionic liquids. RSC Adv. 2012,
2, 11936−11943.
́ ̂
(5) Ben Ghanem, O.; Mutalib, M. A.; Leveque, J.-M.; Gonfa, G.; Kait,
(27) Glasser, L. Lattice and phase transition thermodynamics of ionic
liquids. Thermochim. Acta 2004, 421, 87−93.
(28) Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press:
Boca Raton, FL, 2004.
C. F.; El-Harbawi, M. Studies on the Physicochemical Properties of
Ionic Liquids Based On 1-Octyl-3-methylimidazolium Amino Acids. J.
Chem. Eng. Data 2015, 60, 1756−1763.
(6) Hanke, C.; Atamas, N.; Lynden-Bell, R. Solvation of small
molecules in imidazolium ionic liquids: a simulation study. Green Chem.
2002, 4, 107−111.
(29) de Castro, C. A. N.; Langa, E.; Morais, A. L.; Lopes, M. L. M.;
Lourenco
̧
, M. J.; Santos, F. J.; Santos, M. S. C.; Lopes, J. N. C.; Veiga, H.
̃
I.; Macatrao, M. Studies on the density, heat capacity, surface tension
(7) Kurnia, K. A.; Mutalib, M. A.; Ariwahjoedi, B. Estimation of
physicochemical properties of ionic liquids [H2N-C2mim][BF4] and
[H2N-C3mim][BF4]. J. Chem. Eng. Data 2011, 56, 2557−2562.
(8) Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B. Thermal
properties of imidazolium ionic liquids. Thermochim. Acta 2000, 357,
97−102.
and infinite dilution diffusion with the ionic liquids [C4mim][NTf2],
[C4mim][dca], [C2mim][EtOSO3] and [Aliquat][dca]. Fluid Phase
Equilib. 2010, 294, 157−179.
(30) Olivier-Bourbigou, H.; Magna, L. Ionic liquids: perspectives for
organic and catalytic reactions. J. Mol. Catal. A: Chem. 2002, 182, 419−
437.
(9) Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley:
Weinheim, Germany, 2008.
(10) Earle, M. J.; Seddon, K. R. Ionic liquids. Green solvents for the
(31) Hardacre, C.; Holbrey, J. D.; Katdare, S. P.; Seddon, K. R.
Alternating copolymerisation of styrene and carbon monoxide in ionic
liquids. Green Chem. 2002, 4, 143−146.
(32) Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.;
Broker, G. A.; Rogers, R. D. Characterization and comparison of
hydrophilic and hydrophobic room temperature ionic liquids
incorporating the imidazolium cation. Green Chem. 2001, 3, 156−164.
(33) Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N.;
Brennecke, J. F. Thermophysical properties of imidazolium-based ionic
liquids. J. Chem. Eng. Data 2004, 49, 954−964.
(34) Paduszynski, K.; Domanska, U. A new group contribution
method for prediction of density of pure ionic liquids over a wide range
of temperature and pressure. Ind. Eng. Chem. Res. 2012, 51, 591−604.
(35) Ye, C.; Shreeve, J. n. M. Rapid and accurate estimation of densities
of room-temperature ionic liquids and salts. J. Phys. Chem. A 2007, 111,
1456−1461.
(36) Gardas, R. L.; Coutinho, J. A. A group contribution method for
viscosity estimation of ionic liquids. Fluid Phase Equilib. 2008, 266, 195−
201.
future. Pure Appl. Chem. 2000, 72, 1391−1398.
(11) Rogers, R. D.; Seddon, K. R.; Volkov, S. Green Industrial
Applications of Ionic Liquids; Springer Science & Business Media: New
York, 2012.
(12) Kermanioryani, M.; Ismail, L. B.; Mutalib, M. I. A.; Bagherzadeh,
G. Removal of Methylene Blue from Aqueous Solution by Ionic Liquid.
Appl. Mech. Mater. 2014, 625, 241−244.
(13) Ziyada, A. K.; Wilfred, C. D.; Bustam, M. A.; Man, Z.; Murugesan,
T. Thermophysical properties of 1-propyronitrile-3-alkylimidazolium
bromide ionic liquids at temperatures from (293.15 to 353.15). J. Chem.
Eng. Data 2010, 55, 3886−3890.
(14) Davis, J. H., Jr.; Forrester, K. J. Thiazolium-ion based organic ionic
liquids (OILs): 1,2 Novel OILs which promote the benzoin
condensation. Tetrahedron Lett. 1999, 40, 1621−1622.
(15) Rogers, R. D.; Seddon, K. R. Ionic liquids–solvents of the future?
Science 2003, 302, 792−793.
(16) Rogers, R. D.; Voth, G. A. Ionic liquids. Acc. Chem. Res. 2007, 40,
1077−1078.
(17) Maase, M. Industrial applications of ionic liquids. Ionic Liq. Synth.
2007, 2, 663−687.
(18) Gardas, R. L.; Coutinho, J. A. Extension of the Ye and Shreeve
group contribution method for density estimation of ionic liquids in a
wide range of temperatures and pressures. Fluid Phase Equilib. 2008,
263, 26−32.
G
J. Chem. Eng. Data XXXX, XXX, XXX−XXX