518 Inorganic Chemistry, Vol. 50, No. 2, 2011
Zhong et al.
detailed comparisons of the electrochemical and spectro-
scopic properties between the cyclometalated and non-
cyclometalated ruthenium complexes with the same bridging
ligand are still rare. In this manuscript, we report on 2,3-di-2-
pyridyl-5,6-diphenylpyrazine (dpdpz, 1; Figure 1), as a new
bridging ligand, and its complexation with ruthenium atoms.
This ligand was designed so that it could behave as either a
cyclometalating or a noncyclometalating ligand for ruthenium
atoms. The difference between tppz and dpdpz is that two of
the lateral pyridines in tppz are replaced by two phenyl rings
in dpdpz. Compared to tppz, which has two N∧N∧N-type tri-
dentate coordination sites, dpdpz is expected to bind transition
metals in a C∧N∧N-type tridentate fashion to form cyclomet-
alated complexes,8 if the phenyl rings participate in the coordi-
nation with metals. However, if the phenyl rings remain intact,
dpdpz could behave as a N∧N-type bidentate binding ligand.
It should be mentioned that a similar bridging ligand, dibenzo-
[a:c](dipyrido[2,3-h:20,30-j])phenazine (dbdpzH2), was reported
a few years ago.9 However, attempts to prepare a sym-
metric dicyclometalated diruthenium complex were not
successful.
Figure 1. Bridging ligands.
ligands 2,3-di-2-pyridylpyrazine (dpp), 2,3-di-2-pyridylquin-
oxaline (dpq), and 2,3-di-2-pyridylbenzo[g]quinoxaline (dpb)
and their derivatives are emissive.3 Most of these complexes
absorb strongly and emit in the vis/near-IR (NIR) region.
They have been investigated in many photoinduced energy/
electron-transfer processes and as light-harvesting materials.
All of these studies have demonstrated that the development
of new polypyridine bridging ligands with comparable and
complementary electronic properties is still of great interest
to the materials science and chemistry communities.4
Recently, much attention has been paid to cyclometalated
ruthenium complexes, which have at least one Ru-C σ bond
present in the complex. The introduction of a negative charge
in the ligand strongly affects the electronic and photophysical
properties of the complexes. In contrast to noncyclometalated
counterparts, cyclometalated ruthenium complexes generally
exhibit much lower metal-based oxidation potentials5 and
stronger metal-metal electronic coupling between individual
metal centers.6 It should be noted that bis(triazole)- or bis-
(tetrazole)pyridine, as reported by Vos and co-workers, can
also act as σ-donor ligands, and the corresponding RuII(tpy)-
type complexes show attractive emissive properties.7 However,
Results and Discussion
Synthesis. 1 has been reported as a spectrophotometric
reagent for copper and iron ions by Khuhawar and co-
workers.10 However, to the best of our knowledge, only
limited studies on the synthesis and characterization of its
transition-metal complexes have been described. 1 was
readily prepared from the condensation of meso-1,2-
diphenylethylenediamine with 2,20-pyridil and subsequent
dehydrogenation (Scheme 1). The precipitate, which was
separated from the reaction mixture, was analytically
pure and used for subsequent transformations without
further purification. The reaction of 1 with 1 equiv of
(tpy)RuCl3 (tpy = 2,20:60,200-terpyridine) in the presence
of AgOTf gave the desired cyclometalated monoruthe-
nium complex 2 in moderate yield (52%). When 1 was
treated with 2 equiv of (tpy)RuCl3, the biscyclometalated
diruthenium complex 3 was isolated in 36% yield after
flash column chromatography.
(3) (a) Balzani, V.; Campagna, S.; Denti, G.; Juris, A.; Serroni, S.; Venturi, M.
Acc. Chem. Res. 1998, 31, 26. (b) Serroni, S.; Juris, A.; Campagna, S.; Venturi, M.;
Denti, G.; Balzani, V. J. Am. Chem. Soc. 1994, 116, 9086. (c) Waterland, M. R.;
Flood, A.; Gordon, K. C. J. Chem. Soc., Dalton Trans. 2000, 121. (d) Denti, G.;
Campagna, S.; Sabatino, L.; Serroni, S.; Ciano, M.; Balzani, V. Inorg. Chem. 1990, 29,
4750. (e) Serroni, S.; Denti, G.; Campagna, S.; Juris, A.; Ciano, M.; Balzani, V. Angew.
Chem., Int. Ed. 1992, 31, 1493. (f) D'Alessandro, D. M.; Dinolfo, P. H.; Davis, M. S.;
Hupp, J. T.; Keene, F. R. Inorg. Chem. 2006, 45, 3261. (g) Sahai, R.; Morgan, L.;
Rillema, D. P. Inorg. Chem. 1988, 27, 3495. (h) Yoblinski, B. J.; Stathis, M.; Guarr,
T. F. Inorg. Chem. 1992, 31, 5. (i) Richter, M. M.; Brewer, K. J.; Yoblinski, B. J.;
Stathis, M.; Guarr, T. F. Inorg. Chem. 1992, 31, 1594. (j) Richter, M. M.; Brewer, K. J.
Inorg. Chem. 1993, 32, 2827. (k) Milkevitch, M.; Brauns, E.; Brewer, K. J. Inorg.
Chem. 1996, 35, 1737. (l) Marcaccio, M.; Paolucci, F.; Paradisi, C.; Roffia, S.;
Fontanesi, C.; Yellowlees, L. J.; Serroni, S.; Campagna, S.; Denti, G.; Balzani, V.
J. Am. Chem. Soc. 1999, 121, 10081. (m) Molnar, S. M.; Neville, K. R.; Jensen, G. E.;
Brewer, K. J. Inorg. Chim. Acta 1993, 206, 69. (n) Braunstein, C. H.; Baker, A. D.;
Strekas, T. C.; Gafney, H. D. Inorg. Chem. 1984, 23, 857.
The reaction of 2 equiv of cis-(bpy)2RuCl2 (bpy=2,20-
bipyridine) with dpdpz under microwave irradiation gave
a mixture of monoruthenium complex 4 and diruthenium
complex 5. In this case, the dpdpz ligand coordinates to
RuII atoms in a N∧N bidentate fashion. After purification
through flash column chromatography, 4 and 5 were
obtained in 28% and 36% yield, respectively. Alterna-
tively, monoruthenium complex 4 was prepared from
1 equiv of cis-(bpy)2RuCl2 and dpdpz in good yield (90%).
(4) (a) Han, F. S.; Higuchi, M.; Kurth, D. G. J. Am. Chem. Soc. 2008, 130,
ꢀ
2073. (b) Collin, J.-P.; Laine, P.; Launay, J.-P.; Sauvage, J.-P.; Sour, A. Chem.
1
Commun. 1993, 434. (c) Han, F. S.; Higuchi, M.; Kurth, D. G. Org. Lett. 2007, 9, 559.
(d) Kaim, W.; Sarkar, B. Coord. Chem. Rev. 2007, 251, 584. (e) Carlson, C. N.; Kuehl,
C. J.; Da Re, R. E.; Veauthier, J. M.; Schelter, E. J.; Milligan, A. E.; Scott, B. L.; Bauer,
E. D.; Thompson, J. D.; Morris, D. E.; John, K. D. J. Am. Chem. Soc. 2006, 128,
7230. (f) Sauers, A. L.; Ho, D. M.; Bernhard, S. J. Org. Chem. 2004, 69, 8910.
(5) Coudret, C.; Fraysse, S.; Launay, J.-P. Chem. Commun. 1998, 663.
(6) (a) Constable, E. C.; Thompson, A. M. W.; Greulich, S. Chem. Commun.
1993, 1444. (b) Beley, M.; Collin, J.-P.; Louis, R.; Metz, B.; Sauvage, J.-P. J. Am.
Chem. Soc. 1991, 113, 8521. (c) Lai, S.-W.; Cheung, T.-C.; Chan, M. C. W.; Cheung,
K.-K.; Peng, S.-M.; Che, C.-M. Inorg. Chem. 2000, 39, 255. (d) Patoux, C.; Launay,
J.-P.; Beley, M.; Chodorowski-Kimmers, S.; Collin, J.-P.; James, S.; Sauvage, J.-P.
J. Am. Chem. Soc. 1998, 120, 3717. (e) Yao, C.-J.; Sui, L.-Z.; Xie, H.-Y.; Xiao, W.-J.;
The identities of 2-5 were confirmed by their H NMR
and mass spectrometry (MS) spectra and elemental analyses.
(8) (a) Djukic, J.-P.; Sortais, J.-B.; Barloy, L.; Pfeffer, M. Eur. J. Inorg.
€
€
Chem. 2009, 817. (b) Jager, M.; Smeigh, A.; Lombeck, F.; Gorls, H.; Collin, J.-P.;
€
Sauvage, J.-P.; Hammarstrom, L.; Johansson, O. Inorg. Chem. 2010, 49, 374.
(c) Wadman, S. H.; Lutz, M.; Tooke, D. M.; Spek, A. L.; Hartl, F.; Havenith, R. W. A.;
van Klink, G. P. M.; van Koten, G. Inorg. Chem. 2009, 48, 1887. (d) Wadman, S. H.;
Havenith, R. W. A.; Hartl, F.; Lutz, M.; Spek, A. L.; van Klink, G. P. M.; van Koten, G.
Inorg. Chem. 2009, 48, 5685. (e) Bomben, P. G.; Robson, K. C. D.; Sedach, P. A.;
Berlinguette, C. P. Inorg. Chem. 2009, 48, 9631. (f) Koivisto, B. D.; Robson, K. C. D.;
Berlinguette, C. P. Inorg. Chem. 2009, 48, 9644.
(9) Duprez, V.; Launay, J.-P.; Gourdon, A. Inorg. Chim. Acta 2003, 343,
395.
(10) Belcher, R.; Khuhawar, M. Y.; Stephen, W. I. J. Chem. Soc. Pak.
1989, 11, 185.
ꢁ
Zhong, Y.-W.; Yao, J. Inorg. Chem. 2010, 49, 8347. (f) Vila, N.; Zhong, Y.-W.;
~
Henderson, J. C.; Abruna, H. D. Inorg. Chem. 2010, 49, 796.
(7) (a) Duati, M.; Tasca, S.; Lynch, F. C.; Bohlen, H.; Vos, J. G.; Stagni,
S.; Ward, M. D. Inorg. Chem. 2003, 42, 8377. (b) Duati, M.; Fanni, S.; Vos, J. G.
Inorg. Chem. Commun. 2000, 3, 68.