C O M M U N I C A T I O N S
Table 1. Oxidative Alkylation of ú-Alkenyl â-Diketones Catalyzed
by PdCl2(CH3CN)2 (2) (5 mol %) in the Presence of CuCl2 (2.5
equiv) in DCE at Room Temperature for 3-7 h
Scheme 3
Acknowledgment. R.W. thanks the A. P. Sloan Foundation,
the Camille and Henry Dreyfus Foundation, DuPont, and Glaxo-
SmithKline for financial assistance. Academic year support for T.P.
and X.W. has been provided by Duke University in the form of a
Charles R. Hauser Fellowship and Burroughs Wellcome Fellowship,
respectively.
Supporting Information Available: Experimental procedures and
spectroscopic data for new compounds and cyclohexanones (PDF). This
References
(1) (a) deMeijere, E.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33,
2379. (b) Ableman, M. R.; Oh, T.; Overman, L. E J. Org. Chem. 1987,
52, 4133.
(2) For a Co-catalyzed approach see: Ikeda, Y.; Nakamura, T.; Yorimitsu,
a
b
Reaction run at 70 °C. 10 mol % catalyst employed and 14%
H.; Oshima, K. J. Am. Chem. Soc. 2002, 124, 6514.
hydroalkylation product formed.
(3) (a) Hegedus, L. S. Angew. Chem., Int. Ed. Engl. 1988, 27, 1113. (b)
Tamaru, Y.; Hojo, M.; Higashimura, H.; Yoshida, Z. J. Am. Chem. Soc.
1988, 110, 3994.
(4) (a) Hosokawa, T.; Murahashi, S.-I. Acc. Chem. Res. 1990, 23, 49. (b)
van Bentheim, R. A. T. M.; Hiemstra, H.; Michels, J. J.; Speckamp, W.
N. J. Chem. Soc., Chem. Commun. 1994, 357.
(5) (a) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, A.
Angew. Chem., Int. Ed. Engl. 1962, 1, 80. (b) Tsuji, J. Synthesis 1984,
369.
(6) (a) Hegedus, L. S.; Darlington, W. H. J. Am. Chem. Soc. 1980, 102, 4980.
(b) Kende, A. S.; Roth, B.; Sanfilippo, P. J.; Blacklock, T. J. J. Am. Chem.
Soc. 1982, 104, 5808. (c) Ito, Y.; Aoyama, H.; Hirao, T.; Mochizuki, A.;
Saegusa, T. J. Am. Chem. Soc. 1979, 101, 494.
(7) Pd(II)-catalyzed oxidative alkylation of a 1,3-diene has been reported:
Ro¨nn, M.; Andersson, P. G.; Ba¨ckvall, J. E. Tetrahedron Lett. 1997, 38,
3603.
(8) A single example of the Pd(OAc)2-catalyzed cycloalkenylation of an
alkenyl silyl enol ether has been reported: Toyota, M.; Wada, T.;
Fukumoto, K.; Ihara, M. J. Am. Chem. Soc. 1998, 120, 4916.
(9) (a) Pei, T.; Widenhoefer, R. A. J. Am. Chem. Soc. 2001, 123, 11290. (b)
Pei, T.; Widenhoefer, R. A. Chem. Commun. 2002, 650.
(10) Ba¨ckvall, J. E.; Åkermark, B.; Ljunggren, S. O. J. Am. Chem. Soc. 1979,
101, 2411.
species,10 which would eliminate HCl and react with CuCl2 to
regenerate the catalytically active Pd(II) species (Scheme 3). Both
the isomerization of III to VI and olefin displacement from VI
must be fast relative to protonolysis of palladium alkyl intermediates
III and V to account for the selective formation of 5. We currently
do not understand the factors that control partitioning between the
oxidative alkylation and hydroalkylation pathways in the Pd(II)-
catalyzed cyclization of alkenyl â-diketones.9
In summary, we have developed the first effective transition
metal-catalyzed protocol for the oxidative alkylation of an unac-
tivated olefin with a carbon nucleophile. Our efforts are currently
directed toward expanding the substrate scope of oxidative alkyl-
ation with respect to tether length and olefinic substitution, toward
elucidating the mechanism of this transformation, and toward
understanding the factors that determine product selectivity in the
Pd(II)-catalyzed cyclization of alkenyl â-diketones and related
substrates.
JA026317B
9
J. AM. CHEM. SOC. VOL. 125, NO. 3, 2003 649