the lamellar interlayer distance which, according to molecular
modelling (by means of Hyperchem software), may correspond
to a higher interdigitation of the BP moieties. This last point
is corroborated with the X-ray diffraction patterns obtained
below 70 1C.
2 D. W. Bruce, D. A. Dunmur, E. Lalinde, P. M. Maitlis and
P. Styring, Nature, 1986, 323, 791–792; B. Donnio, D. Guillon,
R. Deschenaux and D. W. Bruce, in Comprehensive Coordination
Chemistry II: From Biology to Nanotechnology, ed. J. A. Mc
Cleverty, J. J. Meyer, M. Fujita and A. Powell, Elsevier, Oxford,
2003, pp. 357–627.
3 T. J. Bunning, L. V. Natarajan, V. Tondiglia, R. L. Sutherland,
D. L. Vezie and W. W. Adams, Polymer, 1995, 36, 2699–2708;
T. Kato, in Molecular Self-Assembly, 2000, pp. 95–146;
L. Cunha-Silva, S. Lima, D. Ananias, P. Silva, L. Mafra,
L. D. Carlos, M. Pillinger, A. A. Valente, F. A. A. Paz and
J. Rocha, J. Mater. Chem., 2009, 19, 2618–2632; A. B. Gaspar,
M. Seredyuk and R. Gutlich, Coord. Chem. Rev., 2009, 253,
2399–2413.
4 A. W. Maverick and H. B. Gray, J. Am. Chem. Soc., 1981, 103,
1298–1300; D. G. Nocera and H. B. Gray, J. Am. Chem. Soc.,
1984, 106, 824–825.
5 A. W. Maverick, J. S. Najdzionek, D. MacKenzie, D. G. Nocera
and H. B. Gray, J. Am. Chem. Soc., 1983, 105, 1878–1882.
6 K. Kirakci, S. Cordier and C. Perrin, Z. Anorg. Allg. Chem., 2005,
631, 411–416.
7 F. Grasset, F. Dorson, S. Cordier, Y. Molard, C. Perrin, A.-M. Marie,
T. Sasaki, H. Haneda, Y. Bando and M. Mortier, Adv. Mater., 2008,
20, 143–148; F. Grasset, F. Dorson, Y. Molard, S. Cordier,
V. Demange, C. Perrin, V. Marchi-Artzner and H. Haneda, Chem.
Commun., 2008, 4729–4731; F. Grasset, Y. Molard, S. Cordier,
F. Dorson, M. Mortier, C. Perrin, M. Guilloux-Viry, T. Sasaki and
H. Haneda, Adv. Mater., 2008, 20, 1710–1715.
8 G. Prabusankar, Y. Molard, S. Cordier, S. Golhen, Y. Le Gal,
C. Perrin, L. Ouahab, S. Kahlal and J. F. Halet, Eur. J. Inorg.
Chem., 2009, 2153–2161; S. Ababou-Girard, S. Cordier, B. Fabre,
Y. Molard and C. Perrin, ChemPhysChem, 2007, 8, 2086–2090;
B. Fabre, S. Cordier, Y. Molard, C. Perrin, S. Ababou-Girard and
C. Godet, J. Phys. Chem. C, 2009, 113, 17437–17446.
9 Y. Molard, F. Dorson, K. A. Brylev, M. A. Shestopalov,
Y. Le Gal, S. Cordier, Y. V. Mironov, N. Kitamura and
C. Perrin, Chem.–Eur. J., 2010, 16, 5613–5619.
10 Y. Molard, F. Dorson, V. Circu, T. Roisnel, F. Artzner and
S. Cordier, Angew. Chem., Int. Ed., 2010, 49, 3351–3355.
11 B. Donnio, B. Heinrich, T. Gulik-Krzywicki, H. Delacroix,
D. Guillon and D. W. Bruce, Chem. Mater., 1997, 9, 2951–2965;
B. Donnio and D. W. Bruce, New J. Chem., 1999, 23, 275–286.
12 S. I. Kim, M. Ree, T. J. Shin and J. C. Jung, J. Polym. Sci., Part A:
Polym. Chem., 1999, 37, 2909–2921; T. Ranganathan, C. Ramesh
and A. Kumar, J. Polym. Sci., Part A: Polym. Chem., 2004, 42,
2734–2746; G. D. Liu, J. G. Gao, L. L. Song, W. J. Hou and
L. C. Zhang, Macromol. Chem. Phys., 2006, 207, 2222–2231;
X. Y. Liu, W. Xu, G. D. Ye and Y. Gu, Polym. Eng. Sci., 2006,
46, 123–128; M. Li, H. Lai, B. X. Chen, X. Y. Liu and Y. Gu, Liq.
Cryst., 2010, 37, 149–158.
Indeed, lowering the temperature to 60 1C (first crystalline
phase) is traduced on the X-ray diffraction pattern by an
increase of the interlayer distance and by the appearance of a
signal located at 3.18 A relative to p–p stacking interactions of
the biphenyl moieties (see ESIw). Let us note that, such impact
on mesogenic properties by removal of CN groups has been
previously reported for amphiphilic liquid crystalline oligomers
based on semiperfluorinated ester derivatives of gallic acid.20
As the emissive excited state of Mo6 clusters is mainly metal
centered,21 the coordination of organic ligands onto the six
metal atoms should not induce significant changes in the
emission properties of the cluster core. Therefore, emission
measurements were carried out for (nBu4N)2[Mo6Br8L6] on a
sample deposited by spin coating on a silicon wafer, heated at
90 1C and cooled to room temperature. (nBu4N)2[Mo6Br8L6]
shows the same broad emission, from 550 to nearly 900 nm with
a maximum located at 740 nm than its fluoride precursor, for a
wide range of excitation wavelength starting from 300 nm to
550 nm (see ESIw). This similar behaviour upon light excitation
is of significant importance because it shows that different types
of ligands can be used to modify the liquid crystalline properties
of the clustomesogens without altering their luminescence
properties. Yet, it gives them a major advantage on metallo-
mesogens containing d-block elements for which, most of the
emissive excited states are not metal centred and thus, for which
the emission is strongly affected by the nature of the ligands and
the intramolecular interactions occurring in the mesophase.22
In conclusion, we have shown in this work that, despite its
octahedral coordination sphere and its bulkiness, a one nano-
metre sized octahedral transition metal cluster can promote
the formation of a liquid crystal phase when it is bounded to
six non-liquid crystal organic ligands. The intrinsic lumines-
cence properties of the cluster core are not significantly
modified by the grafting of the organic ligands and are not
influenced by intermolecular interactions existing either in the
mesomorphic or crystalline phase. These two important results
open new and fascinating perspectives in the design of other
type of clustomesogen for which these evidenced synergetic
effects between the metallic core and the organic bounded
ligands will play an essential role in the behaviour of the
resulting organic–inorganic hybrid nanomaterial.
13 F. Dorson, Y. Molard, S. Cordier, B. Fabre, O. Efremova,
D. Rondeau, Y. Mironov, V. Circu, N. Naumov and C. Perrin,
Dalton Trans., 2009, 1297–1299.
14 S. Singh, Phys. Rep., 2000, 324, 108–269.
15 B. Dardel, D. Guillon, B. Heinrich and R. Deschenaux, J. Mater.
Chem., 2001, 11, 2814–2831.
16 T. Chuard, R. Deschenaux, A. Hirsch and H. Schonberger, Chem.
Commun., 1999, 2103–2104; R. Deschenaux, B. Donnio and
D. Guillon, New J. Chem., 2007, 31, 1064–1073.
This work was done in the frame of the French-Romanian
PHC Brancusi program 2009–2010/19616UF. The authors
thank UR1, Region Bretagne (CREATE program) and
Fondation Langlois for financial support. V.C. and A.S.M.
thank CNCSIS-UEFISCSU (project PNII Idei ID_954) for
funding. Y.M. wish to thank Dr F. Artzner and C. Meriadec
to provide access to SAXS measurements and Dr V. Marchi-
Artzner for access to spectrofluorimeter.
17 G. H. Mehl and I. M. Saez, Appl. Organomet. Chem., 1999, 13,
261–272.
18 B. Donnio and D. Guillon, Adv. Polym. Sci., 2006, 201, 45–155;
I. M. Saez and J. W. Goodby, Structure and Bonding, 2008, 128,
1–62.
19 K. Ohta, H. Muroki, K. I. Hatada, I. Yamamoto and
K. Matsuzaki, Mol. Cryst. Liq. Cryst., 1985, 130, 249–263;
K. Ohta, H. Muroki, K. I. Hatada, A. Takagi, H. Ema,
I. Yamamoto and K. Matsuzaki, Mol. Cryst. Liq. Cryst., 1986,
140, 163–177; K. Ohta, H. Ema, H. Muroki, I. Yamamoto and
K. Matsuzaki, Mol. Cryst. Liq. Cryst., 1987, 147, 61–78.
20 A. Yamaguchi and A. Yoshizawa, Mol. Cryst. Liq. Cryst., 2007,
479, 1219–1227.
Notes and references
´
1 R. Gimenez, M. Pinol and J. L. Serrano, Chem. Mater., 2004, 16,
1377–1383; Y. Sagara, S. Yamane, T. Mutai, K. Araki and
T. Kato, Adv. Funct. Mater., 2009, 19, 1869–1875.
21 H. Honda, T. Noro, K. Tanaka and E. Miyoshi, J. Chem. Phys.,
2001, 114, 10791–10797.
22 K. Binnemans, J. Mater. Chem., 2009, 19, 448–453.
c
2058 Chem. Commun., 2011, 47, 2056–2058
This journal is The Royal Society of Chemistry 2011