23 Z. J. Gartner, R. Grubina, C. T. Calderone and D. R. Liu, Angew.
Chem., Int. Ed., 2003, 42, 1370–1375.
Acknowledgements
24 J. Kalia and R. Raines, Angew. Chem., Int. Ed., 2008, 47, 7523–7526.
25 T. Zatsepin, D. Stetsenko, M. Gait and T. Oretskaya, Bioconjugate
Chem., 2005, 16, 471–489.
Funding for this work was provided by EPSRC IDEAS Factory
grants EP/F056605/1, EP/008597/1 and linked grants. We thank
Dr Nicky King (University of Exeter), Professor Andy Tyrrell
(University of York) and Dr Fred Currell (Queen’s University
Belfast) for helpful discussions, and acknowledge Diluar Khan
(Warwick) and Thomas J. Bandy (Southampton) for initial
thioester work. Some of the equipment used in this research
was obtained through Birmingham Science City with support
from Advantage West Midlands (AWM) and part funded by the
European Regional Development Fund (ERDF).
26 The pKa values have been calculated using ACD/I-Lab service and
were compared with literature values (given in brackets) for closest
match: amine 10.7 (10.6; from H. K. Hall, Jr., J. Am. Chem. Soc.,
1957, 79, 5441–5444); benzylamine 8.8 (9.3; ibid.); aminooxy 3.4 (4.6;
ibid.); hydrazide 2.9 (3.0; from; P. R. Campodo´nico, M. E. Aliaga, J.
G. Santos, E. A. Castro and R. Contreras, Chem. Phys. Lett., 2010,
488, 86–89); hydrazine 4.9 (5.2; from; J. B. Conant and P. D. Bartlett, J.
Am. Chem. Soc., 1932, 54, 2881–2889); hydrazino-nicotinate 1.6 (-0.5;
from; M. Mure, D. E. Brown, C. Saysell, M. S. Rogers, C. M. Wilmot,
C. R. Kurtis, M. J. McPherson, S. E. V. Phillips, P. F. Knowles and D.
M. Dooley, Biochemistry, 2005, 44, 1568–1582).
27 S. Raddatz, J. Mueller-Ibeler, J. Kluge, L. Wa¨ss, G. Burdinski, J. Havens,
T. Onofrey, D. Wang and M. Schweitzer, Nucleic Acids Res., 2002, 30,
4793–4802.
References
28 S. Antsypovich and G. von Kiedrowski, Nucleosides, Nucleotides
1 Y. Brudno and D. R. Liu, Chem. Biol., 2009, 16, 265–276.
2 L. J. Prins and P. Scrimin, Angew. Chem., Int. Ed., 2009, 48, 2288–2306.
3 M. F. Jacobsen, J. B. Ravnsbaek and K. V. Gothelf, Org. Biomol. Chem.,
2010, 8, 50–52.
Nucleic Acids, 2005, 24, 211–226.
29 T. Zatsepin, D. Stetsenko, M. Gait and T. Oretskaya, Nucleic Acids
Symp. Ser., 2005, 133–134.
30 G. Grimm, A. Boutorine and C. He´le`ne, Nucleosides, Nucleotides
Nucleic Acids, 2000, 19, 1943–1965.
4 K. Meguellati, G. Koripelly and S. Ladame, Angew. Chem., Int. Ed.,
2010, 49, 2738–2742.
5 Z. Gartner and D. Liu, J. Am. Chem. Soc., 2001, 123, 6961–6963.
6 X. Li and D. Liu, Angew. Chem., Int. Ed., 2004, 43, 4848–4870.
7 T. Grossmann, A. Strohbach and O. Seitz, ChemBioChem, 2008, 9,
2185–2192.
8 I. Boll, R. Kramer, J. Brunner and A. Mokhir, J. Am. Chem. Soc., 2005,
127, 7849–7856.
9 D. Summerer and A. Marx, Angew. Chem., Int. Ed., 2002, 41, 89–90.
10 M. Rozenman, B. McNaughton and D. Liu, Curr. Opin. Chem. Biol.,
2007, 11, 259–268.
31 B. Amit, U. Zehavi and A. Patchorn, J. Org. Chem., 1974, 39, 192–196.
32 A. Dirksen and P. Dawson, Bioconjugate Chem., 2008, 19, 2543–2548.
33 J. Vulterin and J. Zy´ka, Talanta, 1963, 10, 891–898.
34 It should be noted that it was not our intention to optimise the yields of
the acyl transfer reactions, but to directly compare the efficiency of the
various nucleophiles under different conditions. Therefore, the yields
stated do not reflect the maximum possible yields as the reactions were
stopped and evaluated after a certain time, irrespective of whether they
had gone to completion or not.
35 K. Broo, M. Allert, L. Andersson, P. Erlandsson, G. Stenhagen, J.
Wigstrom, P. Ahlberg and L. Baltzer, J. Chem. Soc., Perkin Trans. 2,
1997, 397–398.
11 J. Scheuermann, C. Dumelin, S. Melkko and D. Neri, J. Biotechnol.,
2006, 126, 568–581.
12 A. Silverman and E. Kool, Chem. Rev., 2006, 106, 3775–3789.
13 M. Hansen, P. Blakskjaer, L. Petersen, T. Hansen, J. Hjfeldt, K. Gothelf
and N. Hansen, J. Am. Chem. Soc., 2009, 131, 1322–1327.
14 Z. Gartner, M. Kanan and D. Liu, J. Am. Chem. Soc., 2002, 124,
10304–10306.
36 L. Leman, D. Weinberger, Z. Huang, K. Wilcoxen and M. Ghadiri, J.
Am. Chem. Soc., 2007, 129, 2959–2966.
37 K. Broo, L. Brive, P. Ahlberg and L. Baltzer, J. Am. Chem. Soc., 1997,
119, 11362–11372.
38 L. Baltzer, K. Broo, H. Nilsson and J. Nilsson, Bioorg. Med. Chem.,
1999, 7, 83–91.
39 N. Sakai, N. Sorde and S. Matile, Molecules, 2001, 6, 845–851.
40 Z. Gartner, R. Grubina, C. Calderone and D. Liu, Angew. Chem., Int.
Ed., 2003, 42, 1370–1375.
41 T. Grossmann, L. Ro¨glin and O. Seitz, Angew. Chem., Int. Ed., 2008,
47, 7119–7122.
15 T. Snyder and D. Liu, Angew. Chem., Int. Ed., 2005, 44, 7379–7382.
16 P. Dawson, T. Muir, I. Clark-Lewis and S. Kent, Science, 1994, 266,
776–779.
17 T. Grossmann and O. Seitz, J. Am. Chem. Soc., 2006, 128, 15596–15597.
18 D. Stetsenko and M. Gait, J. Org. Chem., 2000, 65, 4900–4908.
19 D. Schwarzer, R. Finking and M. A. Marahiel, Nat. Prod. Rep., 2003,
20, 275–287.
42 M. L. McKee, P. J. Milnes, J. Bath, E. Stulz, A. J. Turberfield and R. K.
O’Reilly, Angew. Chem., Int. Ed., 2010, 49, 7948–7951.
43 B. N. Tse, T. M. Snyder, Y. H. Shen and D. R. Liu, J. Am. Chem. Soc.,
2008, 130, 15611–15626.
44 R. E. Kleiner, C. E. Dumelin, G. C. Tiu, K. Sakurai and D. R. Liu, J.
Am. Chem. Soc., 2010, 132, 11779–11791.
20 C. E. Salomon, N. A. Magarvey and D. H. Sherman, Nat. Prod. Rep.,
2004, 21, 105–121.
21 R. Bruick, P. Dawson, S. Kent, N. Usman and G. Joyce, Chem. Biol.,
1996, 3, 49–56.
22 K. Wilcoxen, L. Leman, D. Weinberger, Z. Huang and M. Ghadiri, J.
Am. Chem. Soc., 2007, 129, 748–749.
1666 | Org. Biomol. Chem., 2011, 9, 1661–1666
This journal is
The Royal Society of Chemistry 2011
©