K. Jurkschat et al.
ARTICLE
L. H. Pu, M. M. Olmstead, P. P. Power, Organometallics 1997,
16, 1920–1925; g) C. Drost, P. B. Hitchcock, M. F. Lappert,
L. J. M. Pierssens, Chem. Commun. 1997, 1141–1142; h) C.
Drost, B. Gehrhus, P. B. Hitchcock, M. F. Lappert, Chem. Com-
mun. 1997, 1845–1846; i) C. J. Cardin, D. J. Cardin, S. P. Con-
stantine, M. G. B. Drew, H. Rashid, M. A. Convery, D. Fenske,
J. Chem. Soc., Dalton Trans. 1998, 2749–2756; j) W. P. Leung,
W.-H. Kwok, F. Xue, T. C. W. Mak, J. Am. Chem. Soc. 1997,
119, 1145–1146; k) C. Eaborn, P. B. Hitchcock, J. D. Smith, S. E.
Soezerli, Organometallics 1997, 16, 5653–5658; l) L. H. Pu,
M. M. Olmstead, P. P. Power, B. Schiemenz, Organometallics
1998, 17, 5602–5606; m) M. M. Olmstead, R. S. Simons, P. P.
Power, J. Am. Chem. Soc. 1997, 119, 11705–11706; n) A. A. Bar-
ney, A. F. Heyduk, D. G. Nocera, Chem. Commun. 1999, 2379–
2380; o) M. Mehring, C. Löw, M. Schürmann, F. Uhlig, K. Jurk-
schat, B. Mahieu, Organometallics 2000, 19, 4613–4623; p) B. E.
Eichler, L. H. Pu, M. Stender, P. P. Power, Polyhedron 2001, 20,
551–556; q) S. S. Al-Juaid, A. G. Avent, C. Eaborn, M. S. Hill,
P. B. Hitchcock, D. J. Patel, J. D. Smith, Organometallics 2001,
20, 1223–1229; r) Y. Ding, H. W. Roesky, M. Noltemeyer, H.-G.
Schmidt, Organometallics 2001, 20, 1190–1194; s) A. Jana,
H. W. Roesky, C. Schulzke, A. Döring, T. Beck, A. Pal, R.
Herbst-Irmer, Inorg. Chem. 2009, 48, 193–197; t) M. Weiden-
bruch, U. Grobecker, W. Saak, E.-M. Peters, K. Peters, Organo-
metallics 1998, 17, 5206–5208; u) S. Benet, C. J. Cardin, D. J.
Cardin, S. P. Constantine, P. Heath, R. Haroon, S. Teixeira, J. H.
Thorpe, A. K. Todd, Organometallics 1999, 18, 389–398; v) Y.
Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev. 2009, 109, 3479–
3511.
ated with UV light (Hg high pressure lamp, 150 W) until the formation
of carbon monoxide gas stopped. After removing the solvent in vacuo
the yellow-green residue was extracted with toluene (40 mL). The tol-
uene solution was concentrated in vacuo to one third of its volume and
stored at –30 °C to give 1.71 g (85 %) of compound 8, as its toluene
1
solvate 8·0.5 C7H8, as yellow crystals of m.p. 139–141 °C. H NMR
3
(400.13 MHz, C6D6): δ = 0.94 (d, 6 H, CH(CH3)(CH3)', J(1H–1H) =
6.0 Hz), 1.10 (s, 15 H, C(CH3)3 + CH(CH3)2, ν1/2 = 12 Hz), 1.24 (d,
6
H, CH(CH3)(CH3)', 3J(1H–1H)
=
7.5 Hz), 1.26 (d,
6
H,
3
CH(CH3)(CH3)', J(1H–1H) = 6.7 Hz), 4.74–4.96 (complex pattern, 4
H, CH(CH3)2), 8.06 (d, CHaryl, J(1H–31P) = 13.3 Hz). 13C{1H} NMR
3
(100.63 MHz, C6D6): δ = 21.0 (complex pattern, CH(CH3)(CH3)'),
21.3 (complex pattern, CH(CH3)(CH3)'), 21.5 (complex pattern,
CH(CH3)(CH3)'), 30.4 (s, C(CH3)3), 34.6 (s, C(CH3)3), 73.6–73.8
(complex pattern, CH(CH3)2), 131.8 (dd, C3/5,
2J(13C–31P) = 14.6,
4J(13C–31P) = 4.8 Hz), 131.8 (dd, C2/6
,
1J(13C–31P) = 188.1, 3J(13C–
3
31P) = 19.9 Hz), 153.7 (t, C4aryl, J(13C–31P) = 11.2 Hz), 171.7 (t, C1,
2J(13C–31P) = 25.8 Hz), 219.4 (s, COcis 2J(13C–119Sn) = 129.3 Hz),
,
225.7 (s, COtrans). 31P{1H} NMR (161.98 MHz, C6D6): δ = 30.4
(J(31P–117/119Sn) = 178 Hz). 119Sn{1H} NMR (149.21 MHz, C6D6): δ =
127.9 (J(119Sn–31P) = 182 Hz). IR (Nujol): ν(P=O) = 1182 cm–1,
˜
1155 cm–1; ν(CO) = 1932 cm–1, 2051 cm–1. Mössbauer spectro-
˜
scopy: IS = 2.01 mm·s–1, QS = 3.50 mm·s–1. Elemental analysis:
C27H39P2O11SnCrCl·0.5 C7H8 (853.84 g·mol–1); C 42.7 (calcd. 42.90);
H 5.0 (5.08) %.
[2] J. T. B. H. Jastrzebski, P. A. van der Schaaf, J. Boersma, G.
van Koten, M. de Wit, Y. Wang, D. Heijdenrijk, C. H. Stam, J.
Organomet. Chem. 1991, 407, 301–311.
Supporting Information (see footnote on the first page of this article):
Molecular structure of 4 (Figure S1), calculated structure (BP86/def2-
TZVP) of the hypothetical compound p-t-BuC6H4SnI (Figure S2) and
molecular orbital interaction diagram of compound 3 (Figure S3).
[3] a) P. P. Power, Organometallics 2007, 26, 4362–4372, and refer-
ences cited therein; b) E. Rivard, P. P. Power, Inorg. Chem. 2007,
46, 10047–10064; c) E. Rivard, P. P. Power, Dalton Discussion
11, The Renaissance of Main Group Chemistry, University of Cal-
ifornia, Berkeley, USA, June 23–25, 2008; Perspective K1; d) R.
Jambor, B. Kasna, K. N. Kirschner, M. Schürmann, K. Jurkschat,
Angew. Chem. Int. Ed. 2008, 47, 1650–1653.
Acknowledgement
We thank Dr. G. Bradtmöller for recording the 31P and 119Sn MAS
NMR spectra and Professor B. Costisella for performing the NOE ex-
periments. Mrs. Sylvia Marzian is acknowledged for recording the
electrospray ionization mass spectra.
[4] a) A. C. Filippou, A. I. Philippopoulos, G. Schnakenburg, Orga-
nometallics 2003, 22, 3339–3341; b) A. C. Filippou, P. Portius,
A. I. Philippopoulos, H. Rohde, Angew. Chem. 2003, 115, 461–
464; Angew. Chem. Int. Ed. 2003, 42, 445–447.
[5] B. E. Eichler, A. D. Phillips, S. T. Haubrich, B. V. Mork, P. P.
Power, Organometallics 2002, 21, 5622–5627.
References
[6] E. Rivard, J. Steiner, J. C. Fettinger, J. R. Giuliani, M. P. Augus-
tine, P. P. Power, Chem. Commun. 2007, 4919–4921.
This work contains parts of the PhD theses of Markus Henn
(TU Dortmund 2004 and Vajk Deáky (TU Dortmund 2010).
Parts of it were first presented at the XVth FECHEM Confer-
ence on Organometallic Chemistry, University of Zürich, 10th
to 15th August 2003, Book of Abstracts OP38, and at the 11th
and 12th International Conferences on the Coordination and
Organometallic Chemistry of Germanium, Tin, and Lead (IC-
COC-GTL-11), Santa Fe (New Mexico, USA) 27th June to
2nd July 2004, Book of Abstracts O54, respectively ICCOC-
GTL-12, Galway (Ireland), July 9–13, 2007, Book of Abstracts
[7] P. B. Hitchcock, M. F. Lappert, A. V. Protchenko, G. H. Uiter-
weerd, Dalton Trans. 2009, 353–361.
[8] W.-P. Leung, W.-H. Kwok, Z.-Y. Zhou, T. C. W. Mak, Organome-
tallics 2003, 22, 1751–1755.
[9] C. Stanciu, A. F. Richards, P. P. Power, J. Am. Chem. Soc. 2004,
126, 4106–4107.
[10] a) J. T. B. H. Jastrzebski, G. van Koten, Adv. Organomet. Chem.
1993, 35, 241–294; b) J. T. H. B. Jastrzebski, D. M. Grove, J.
Boersma, G. van Koten, J.-M. Ernsting, Magn. Reson. Chem.
1991, 29, S25–S30.
[11] a) K. Dannappel, R. Nienhaus, M. Schürmann, B. Costisella, K.
Jurkschat, Z. Anorg. Allg. Chem. 2009, 635, 2126–2134; b) V.
Deáky, M. Schürmann, K. Jurkschat, Z. Anorg. Allg. Chem. 2009,
635, 1380–1383; c) M. Henn, M. Schürmann, B. Mahieu, P. Za-
nello, A. Cinquantini, K. Jurkschat, J. Organomet. Chem. 2006,
691, 1560–1572; d) K. Peveling, K. Dannappel, M. Schürmann,
B. Costisella, K. Jurkschat, Organometallics 2006, 25, 368–374;
e) K. Dannappel, M. Schürmann, B. Costisella, K. Jurkschat, Or-
ganometallics 2005, 24, 1031–1034; f) K. Peveling, M. Henn, C.
Löw, M. Mehring, M. Schürmann, B. Costisella, K. Jurkschat,
Organometallics 2004, 23, 1501–1508; g) K. Jurkschat, K. Pevel-
ing, M. Schürmann, Eur. J. Inorg. Chem. 2003, 3563–3571; h) M.
Henn, K. Jurkschat, R. Ludwig, M. Mehring, K. Peveling, M.
O4.
[1] a) L. M. Engelhardt, B. S. Jolly, M. F. Lappert, C. L. Raston,
A. H. White, J. Chem. Soc., Chem. Commun. 1988, 336–338;
b) J. T. B. H. Jastrzebski, P. A. van der Schaaf, J. Boersma, G.
van Koten, Organometallics 1989, 8, 1373–1375; c) K. Jurkschat,
C. Klaus, M. Dargatz, A. Tzschach, J. Meunier-Piret, B. Mahieu,
Z. Anorg. Allg. Chem. 1989, 577, 122–134; d) B. S. Jolly, M. F.
Lappert, L. M. Engelhardt, A. H. White, C. L. Raston, J. Chem.
Soc., Dalton Trans. 1993, 2653–2663; e) A. J. Edwards, M. A.
Paver, P. R. Ralthby, M.-A. Rennie, C. A. Russel, D. S. Wrigth,
J. Chem. Soc., Dalton Trans. 1995, 1587–1591; f) R. S. Simons,
222
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Z. Anorg. Allg. Chem. 2011, 211–223