H.J. Guadalupe et al. / Journal of Molecular Structure 989 (2011) 70–79
79
[14] F. Frausin, V. Scarcia, M. Cocchietto, A. Furlani, B. Serli, E. Alessio, G. Sava, J.
Pharmacol. Exp. Ther. 313 (2005) 227.
[15] M. Cocchietto, G. Sava, Pharmacol. Toxicol. 87 (2000) 193.
[16] R.E. Aird, J. Cummings, A.A. Ritchie, M. Muir, R.E. Morris, H. Chen, P.J. Sadler,
D.I. Jodrell, Br. J. Cancer 86 (2002) 1652.
[17] R.E. Morris, R.E. Aird, P.D. Murdoch, H.M. Chen, J. Cummings, N.D. Hughes, S.
Parsons, A. Parkin, G. Boyd, D.I. Jodrell, P.J. Sadler, J. Med. Chem. 44 (2001)
3616.
TDDFT with a sizable intensity. It shows that in the frontier orbitals
for the ground state of the complex, the HOMOs have a significant
contribution from Ru t2g d-orbital with a
p contribution from the
benzimidazole. The HOMO of the complex consists mainly of an
anti-bonding combination of a t2g orbital on Ru ion and a p orbital
on Clꢂ.
[18] J.B. Asbury, R.J. Ellingson, H.N. Ghosh, S. Ferrere, A.J. Nozik, T.Q. Lian, J. Phys.
Chem. B 103 (1999) 3110.
[19] N.G. Park, M.G. Kang, K.M. Kim, K.S. Ryu, S.H. Chang, D.K. Kim, J. Van de
Lagemaat, K.D. Benkstein, A.J. Frank, Langmuir 20 (2004) 4246.
[20] T.A. Heimer, E.J. Heilweil, C.A. Bignozzi, G.J. Meyer, J. Phys. Chem. A 104 (2000)
4256.
4. Conclusion
DFT and TD–DFT studies show that the complex [Ru(L1)Cl-
(PPh3)]Cl is present in distorted octahedral geometry, where since
[21] M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel, J. Phys. Chem. B 107
(2003) 8981.
the ligand L1 has
r donor orbitals localized on N and p-donor, and
p⁄-acceptor orbitals delocalized on benzimidzole rings, the back-
donation between the ligand and the Ru orbitals is significant in
the absorption spectra. This is the reason why in the spectra, three
MLCT bands are observed in methanol while in the calculated
absorption spectra only two clear bands associated with six MLCT
electronic transitions are noticed. Furthermore, DFT TDDFT was
used to analyze the molecular orbitals contribution to MLCT bands
that resulted in the visible region, showing that the calculated
spectrum of [RuL1Cl(PPh3)]+ qualitatively agrees with high energy
bands of the experimental spectrum, while other visible bands
(ꢀ580 and 790 nm) in the experimental spectrum approximately
coincide with the TD–DFT of [RuL2(PPh3)Cl]+; however, the exis-
tence of Ru(IV)L2 in the solution is not confirmed. Additionally,
the molecular orbital HOMOs are localized over the benzimidazole
and amine moieties that favor a strong bond with the metal ion.
[22] M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S.
Ito, B. Takeru, M.G. Gratzel, J. Am. Chem. Soc. 127 (2005) 16835.
[23] M.K. Nazeeruddin, C. Klein, P. Liska, M. Gratzel, Coord. Chem. Rev. 249 (2005)
1460.
[24] J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, A. Zaban, J. Phys. Chem. B 108 (2004)
8106.
[25] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N.
Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 115 (1993) 6382.
[26] M.K. Nazeeruddin, P. Pechy, M. Gratzel, Chem. Commun. (Cambridge, UK)
(1997) 1705.
[27] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. Vonzelewsky,
Coord. Chem. Rev. 84 (1988) 85.
[28] T. Pandiyan, M. Palaniandavar, M. Lakshminarayanan, H. Manohar, J. Chem.
Soc. Dalton Trans. (1992) 3377.
[29] M. Palaniandavar, T. Pandiyan, M. Lakshminarayanan, H. Manohar, J. Chem.
Soc. Dalton Trans. (1995) 455.
[30] T. Pandiyan, K. Panneerselvam, M. SorianoGarcia, C.D. deBazua, E.M. Holt, Acta
Crystallogra. Sect. C 52 (1996) 1137.
[31] G.A. van Albada, I. Mutikainen, U. Turpeinen, J. Reedijk, J. Chem. Crystallogr. 37
(2007) 489.
[32] A.W. Addison, H.M.J. Hendriks, J. Reedijk, L.K. Thompson, Inorg. Chem. 20
(1981) 103.
[33] T. Pandiyan, J.G. Hernandez, N.T. Medina, S. Bernes, Inorg. Chim. Acta 357
(2004) 2570.
Acknowledgements
The authors acknowledge the Direccíon General de Asuntos del
Personal Académico (Project PAPIIT No. IN226310 for economic
support. We also thank DGSCA-UNAM for the computation
facilities.
[34] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Jr. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E.Stratmann, O.
Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A.Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, A.N.C.Y. Peng, M. Challacombe,
P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople Gaussian,
Revision D 01; Gaussian Inc., Wallingford, CT, 2004.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
References
[35] A.D. Becke, Phys. Rev. A 38 (1988) 3098.
[36] C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[37] N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70 (1992) 560.
[38] S. Ghosh, G.K. Chaitanya, K. Bhanuprakash, M.K. Nazeeruddin, M. Gratzel, P.Y.
Reddy, Inorg. Chem. 45 (2006) 7600.
[39] U. Sivagnanam, T. Pandiyan, M. Palaniandavar, Indian J. Chem. Sect. B 32
(1993) 572.
[40] M.S. Chao, C.S. Chung, J. Chem. Soc. Dalton Trans. (1981) 683.
[41] R. Taylor, O. Kennard, J. Am. Chem. Soc. 104 (1982) 5063.
[42] G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and
Biology, Oxford University Press, Inc., New York, 1999.
[43] R.G. Pearson, Inorg. Chim. Acta 270 (1998) 252.
[44] R.G. Pearson, J. Chem. Ed. 76 (1999) 267.
[45] D. Mishra, A. Barbieri, C. Sabatini, M.G.B. Drew, H.M. Figgle, W.S. Sheldrick, S.K.
Chattopadhyay, Inorg. Chim. Acta 360 (2007) 2231.
[46] R.G. Pearson, J. Am. Chem. Soc. 85 (1963) 3533.
[1] F. Frausin, M. Cocchietto, A. Bergamo, V. Searcia, A. Furlani, G. Sava, Cancer
Chemother. Pharmacol. 50 (2002) 405.
[2] B. Serli, E. Zangrando, T. Gianfeffara, L. Yellowlees, E. Alessio, Coord. Chem. Rev.
245 (2003) 73.
[3] I. Turel, M. Pecanac, A. Golobic, E. Alessio, B. Serli, A. Bergamo, J. Inorg.
Biochem. 96 (2003) 241.
[4] M.J. Clarke, F.C. Zhu, D.R. Frasca, Chem. Rev. (Washington, DC, US) 99 (1999)
2511.
[5] L. Prodi, F. Bolletta, M. Montalti, N. Zaccheroni, Coord. Chem. Rev. 205 (2000)
59.
[6] M. Gratzel, Nature 414 (2001) 338.
[7] B. Oregan, M. Gratzel, Nature 353 (1991) 737.
[8] N. Vlachopoulos, P. Liska, J. Augustynski, M. Gratzel, J. Am. Chem. Soc. 110
(1988) 1216.
[9] W.I. Sundquist, S.J. Lippard, Coord. Chem. Rev. 100 (1990) 293.
[10] M. Cusumano, Inorg. Chem 37 (1998) 563.
[11] D.S. Sigman, A. Mazumder, D.M. Perrin, Chem. Rev. (Washington, DC, US) 93
(1993) 2295.
[47] R.G. Pearson, J. Chem. Educ. 45 (1968) 581.
[48] D. Saha, S. Das, C. Bhaumik, S. Dutta, S. Baitalik, Inorg. Chem. 49 (2010) 2334.
[49] C. Bhaumik, S. Das, D. Saha, S. Dutta, S. Baitalik, Inorg. Chem. 49 (2010) 5049.
[50] C. Barolo, M.K. Nazeeruddin, S. Fantacci, D. Di Censo, P. Comte, P. Liska, G.
Viscardi, P. Quagliotto, F. De Angelis, S. Ito, M. Gratzel, Inorg. Chem. 45 (2006)
4642.
[12] H.Q. Liu, T.C. Cheung, S.M. Peng, C.M. Che, J. Chem. Soc. Chem. Commun (1995)
1787.
[13] H.Q. Liu, S.M. Peng, C.M. Che, J. Chem. Soc. Chem. Commun (1995) 509.