ORGANIC
LETTERS
2011
Vol. 13, No. 7
1875–1877
Carboxylate-Assisted Ruthenium-
Catalyzed Direct Alkylations of Ketimines
ꢀ
Lutz Ackermann,* Nora Hofmann, and Ruben Vicente
€
Institut fu€r Organische und Biomolekulare Chemie, Georg-August-Universitat,
€
Tammannstrasse 2, 37077 Gottingen, Germany
Received February 8, 2011
ABSTRACT
The mechanism of carboxylate-assisted ruthenium(II)-catalyzed direct alkylations of ketimines with unactivated alkyl halides was probed through
experimental studies. The remarkable chemoselectivity of the broadly applicable catalyst also enabled direct alkylations among others on H2O or
under solvent-free reaction conditions.
Transition-metal-catalyzed direct C-H bond1 alkyla-
tions of arenes under basic reaction conditions have recently
been developed as sustainable alternatives to traditional
cross-coupling reactions between organometallic reagents
and alkyl halides.2 Particularly, ruthenium catalysts3
enabled C-H bond functionalizations with challen-
ging unactivated alkyl halides bearing β-hydrogens.4,5
Despite this recent progress, mechanistic studies on
ruthenium-catalyzed direct alkylations6 have unfortu-
nately thus far not been reported. As a consequence, we
explored the working mode of ruthenium(II) carboxylate
complexes in direct C-H bond functionalizations focusing
particularly on ketimines7 as substrates, because of their
importance as key intermediates in organic synthesis.
Herein, we wish to report on our findings, which include
first direct alkylations on H2O or under solvent-free reac-
tion conditions.
(1) Select recent reviews on metal-catalyzed C-H bond functionali-
zations: (a) Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem. 2010,
8, 4503–4513. (b) Daugulis, O. Top. Curr. Chem. 2010, 292, 57–84. (c)
Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677–685. (d)
Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110,
624–655. (e) Fagnou, K. Top. Curr. Chem. 2010, 292, 35–56. (f) Satoh,
T.; Miura, M. Chem.;Eur. J. 2010, 16, 11212–11222. (g) Jazzar, R.;
Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.;Eur.
J. 2010, 16, 2654–2672. (h) Lei, A.; Liu, W.; Liu, C.; Chen, M. Dalton
Trans. 2010, 39, 10352–10361. (i) Lyons, T. W.; Sanford, M. S. Chem.
Rev. 2010, 110, 1147–1169. (j) Kulkarni, A. A.; Daugulis, O. Synthesis
2009, 4087–4109. (k) Bellina, F.; Rossi, R. Tetrahedron 2009, 65, 10269–
10310. (l) Ackermann, L.; Vicente, R.; Kapdi, A. Angew. Chem., Int. Ed
2009, 48, 9792–9826. (m) Thansandote, P.; Lautens, M. Chem.;Eur. J.
2009, 15, 5874–5883. (n) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013–
3039. (o) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200–205. (p)
Ackermann, L. Synlett 2007, 507–526. (q) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174–238 and references cited therein.
(2) Ackermann, L. Chem. Commun. 2010, 46, 4866–4877.
At the outset of our studies, we tested various phos-
phine ligand-free8 reaction conditions for direct alkyla-
tions of ketimines. Among a variety of stoichiometric
bases, KOAc gave promising results in the absence of an
(3) (a) Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010, 292,
211–229. (b) Ackermann, L. Pure Appl. Chem. 2010, 82, 1403–1413.
(6) For experimental mechanistic studies on ruthenium-catalyzed
direct arylations, see: Ackermann, L.; Vicente, R.; Potukuchi, H. K.;
Pirovano,
ꢀ
(4) (a) Ackermann, L.; Novak, P.; Vicente, R.; Hofmann, N. Angew.
ꢀ
V. Org. Lett. 2010, 12, 5032–5035.
Chem., Int. Ed. 2009, 48, 6045–6048. (b) Ackermann, L.; Novak, P. Org.
Lett. 2009, 11, 4966–4969.
(7) For representative recent examples of direct arylations with
imines, see: (a) Tredwell, M. J.; Gulias, M.; Gaunt Bremeyer, N.;
Johansson, C. C. C.; Collins, B. S. L.; Gaunt, M. J. Angw. Chem., Int.
Ed. 2011, 50, 1076–1079. (b) Gao, K.; Yoshikai, N. J. Am. Chem. Soc.
2011, 133, 400–402. (c) Yoshikai, N.; Matsumoto, A.; Norinder, J.;
Nakamura, E. Angew. Chem, Int. Ed. 2009, 48, 2925–2928. (d) Ack-
ermann, L.; Althammer, A.; Born, R. Tetrahedron 2008, 64, 6115–6124.
(e) Oi, S.; Ogino, Y.; Fukita, S.; Inoue, Y. Org. Lett. 2002, 4, 1783–1785
and references cited therein.
(5) For examples of nickel- or palladium-catalyzed direct alkylations
of (hetero)arenes, see: (a) Yao, T.; Hirano, K.; Satoh, T.; Miura, M.
Chem.;Eur. J. 2010, 16, 12307–12311. (b) Shabashov, D.; Daugulis, O.
J. Am. Chem. Soc. 2010, 132, 3965–3972. (c) Vechorkin, O.; Proust, V.;
Hu, X. Angew. Chem., Int. Ed. 2010, 49, 3061–3064. (d) Ackermann, L.;
€
Barfusser, S.; Pospech, J. Org. Lett. 2010, 12, 724–726. (e) Lapointe, D.;
Fagnou, K. Org. Lett. 2009, 11, 4160–4163. (f) Zhang, Y.-H.; Shi, B.-F.;
Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 6097–6100. (g) Rudolph, A.;
Rackelmann, N.; Lautens, M. Angew. Chem., Int. Ed. 2007, 46, 1485–
1488 and references cited therein.
(8) For early direct arylations in the absence of phosphine additives,
see: Ackermann, L.; Althammer, A.; Born, R. Synlett 2007, 2833–2836.
r
10.1021/ol200366n
2011 American Chemical Society
Published on Web 03/09/2011