Journal of Medicinal Chemistry
ARTICLE
’ ACKNOWLEDGMENT
Expression cloning of a mammalian proton-coupled oligopeptide trans-
porter. Nature 1994, 368, 563–566.
(13) Daniel, H.; Morse, E. L.; Adibi, S. A. Determinants of substrate
affinity for the oligopeptide/Hþ symporter in the renal brush-border
membrane. J. Biol. Chem. 1992, 267, 9565–9573.
(14) Haug, B. E.; Stensen, W.; Kalaaji, M.; Rekdal, O.; Svendsen, J. S.
Synthetic antimicrobial peptidomimetics with therapeutic potential.
J. Med. Chem. 2008, 51, 4306–4314.
Professor Georg Nagel at the University of W€urzburg is
gratefully acknowledged for providing Xenopus oocyte images.
The Norwegian Structural Biology Centre (NorStruct) is sup-
ported by the Functional Genomics Program (FUGE) of the
Research Council of Norway.
(15) Haug, B. E.; Stensen, W.; Stiberg, T.; Svendsen, J. S. Bulky
nonproteinogenic amino acids permit the design of very small and
effective cationic antibacterial peptides. J. Med. Chem. 2004, 47,
4159–4162.
(16) Svenson, J.; Karstad, R.; Flaten, G. E.; Brandsdal, B. O.; Brandl,
M.; Svendsen, J. S. Altered activity and physicochemical properties of
short cationic antimicrobial peptides by incorporation of arginine
analogues. Mol. Pharmaceutics 2009, 6, 996–1005.
(17) Svenson, J.; Stensen, W.; Brandsdal, B. O.; Haug, B. E.; Monrad,
J.; Svendsen, J. S. Antimicrobial peptides with stability toward tryptic
degradation. Biochemistry 2008, 47, 3777–3788.
(18) Svenson, J.; Vergote, V.; Karstad, R.; Burvenich, C.; Svendsen,
J. S.; De Spiegeleer, B. Metabolic fate of lactoferricin-based antimicrobial
peptides: effect of truncation and incorporation of amino acid analogs on
the in vitro metabolic stability. J. Pharm. Exp. Ther. 2010,
332, 1032–1039.
’ ABBREVIATIONS USED
hPEPT1, human intestinal peptide transporter 1; PVPA, phos-
pholipid vesicle-based permeation assay; TEVC, two-electrode
voltage clamp; RMDG, R-methyl D-glucopyranoside; Gly-Sar,
glycylsarcosine; PAMPA, parallel artificial membrane permeabi-
lity assay; Bn, benzyl; GFP, green fluorescent protein; MIC,
minimal inhibitory concentration; RP-HPLC, reversed phase high
performance liquid chromatography; Bip, biphenylalanine; Dip, di-
phenylalanine; Gpp, L-2-amino-3-(4-guanidinophenyl)propanoic
acid; ATCC, American Type Culture Collection;Papp, apparent
permeability
’ REFERENCES
(19) Karstad, R.; Isaksen, G.; Brandsdal, B. O.; Svendsen, J. S.;
Svenson, J. Unnatural amino acid side chains as S1, S10, and S20 probes
yield cationic antimicrobial peptides with stability toward chymotryptic
degradation. J. Med. Chem. 2010, 53, 5558–5566.
(1) Dobson, P. D.; Kell, D. B. Carrier-mediated cellular uptake of
pharmaceutical drugs: an exception or the rule?. Nat. Rev. Drug Discovery
2008, 7, 205–220.
(2) Dobson, P. D.; Lanthaler, K.; Oliver, S. G.; Kell, D. B. Implica-
tions of the dominant role of transporters in drug uptake by cells. Curr.
Top. Med. Chem. 2009, 9, 163–181.
(3) Sugano, K.; Kansy, M.; Artursson, P.; Avdeef, A.; Bendels, S.; Di,
L.; Ecker, G. F.; Faller, B.; Fischer, H.; Gerebtzoff, G.; Lennernaes, H.;
Senner, F. Coexistence of passive and carrier-mediated processes in drug
transport. Nat. Rev. Drug Discovery 2010, 9, 597–614.
(4) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv. Drug
Delivery Rev. 1997, 23, 3–25.
(20) Hamman, J. H.; Enslin, G. M.; Kotze, A. F. Oral delivery of
peptide drugs: barriers and developments. BioDrugs 2005, 19, 165–177.
(21) Giannis, A. Peptidomimetics for receptor ligands discovery,
development, and medical perspectives. Angew. Chem. 1993,
32, 1244–1267.
(22) Flaten, G. E.; Dhanikula, A. B.; Luthman, K.; Brandl, M. Drug
permeability across a phospholipid vesicle based barrier: a novel
approach for studying passive diffusion. Eur. J. Pharm. Sci. 2006,
27, 80–90.
(23) Zasloff, M. Antimicrobial peptides of multicellular organisms.
Nature 2002, 415, 389–395.
(5) Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L.
Drugs for bad bugs: confronting the challenges of antibacterial discov-
ery. Nat. Rev. Drug Discovery 2007, 6, 29–40.
(24) Melo, M. N.; Ferre, R.; Castanho, M. OPINION antimicrobial
peptides: linking partition, activity and high membrane-bound concen-
trations. Nat. Rev. Microbiol. 2009, 7, 245–250.
(6) Bretschneider, B.; Brandsch, M.; Neubert, R. Intestinal transport
of beta-lactam antibiotics: analysis of the affinity at the Hþ/peptide
symporter (PEPT1), the uptake into Caco-2 cell monolayers and the
transepithelial flux. Pharm. Res. 1999, 16, 55–61.
(7) Temple, C. S.; Stewart, A. K.; Meredith, D.; Lister, N. A.;
Morgan, K. M.; Collier, I. D.; Vaughan-Jones, R. D.; Boyd, C. A. R.;
Bailey, P. D.; Bronk, J. R. Peptide mimics as substrates for the intestinal
peptide transporter. J. Biol. Chem. 1998, 273, 20–22.
(25) Yeaman, M. R.; Yount, N. Y. Mechanisms of antimicrobial
peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55.
(26) Bremner, J. B.; Keller, P. A.; Pyne, S. G.; Boyle, T. P.; Brkic, Z.;
David, D. M.; Garas, A.; Morgan, J.; Robertson, M.; Somphol, K.; Miller,
M. H.; Howe, A. S.; Ambrose, P.; Bhavnani, S.; Fritsche, T. R.;
Biedenbach, D. J.; Jones, R. N.; Buckheit, R. W.; Watson, K. M.; Baylis,
D.; Coates, J. A.; Deadman, J.; Jeevarajah, D.; McCracken, A.; Rhodes,
D. I. Binaphthyl-based dicationic peptoids with therapeutic potential.
Angew. Chem. 2010, 49, 537–540.
(27) Hansen, T.; Alst, T.; Havelkova, M.; Strom, M. B. Antimicrobial
activity of small beta-peptidomimeties based on the pharmacophore
model of short cationic antimicrobial peptides. J. Med. Chem. 2010,
53, 595–606.
(28) Strom, M. B.; Haug, B. E.; Skar, M. L.; Stensen, W.; Stiberg, T.;
Svendsen, J. S. The pharmacophore of short cationic antibacterial
peptides. J. Med. Chem. 2003, 46, 1567–1570.
(29) Haug, B. E.; Stensen, W.; Svendsen, J. S. Application of the
Suzuki-Miyaura cross-coupling to increase antimicrobial potency gen-
erates promising novel antibacterials. Bioorg. Med. Chem. Lett. 2007,
17, 2361–2364.
(8) Brodin, B.; Nielsen, C. U.; Steffansen, B.; Frokjaer, S. Transport
of peptidomimetic drugs by the intestinal di/tri-peptide transporter,
PepT1. Pharmacol. Toxicol. 2002, 90, 285–296.
(9) Andersen, R.; Jorgensen, F. S.; Olsen, L.; Vabeno, J.; Thorn, K.;
Nielsen, C. U.; Steffansen, B. Development of a QSAR model for binding
of tripeptides and tripeptidomimetics to the human intestinal di-/
tripeptide transporter hPEPT1. Pharm. Res. 2006, 23, 483–492.
(10) Vabeno, J.; Nielsen, C. U.; Ingebrigtsen, T.; Lejon, T.; Steffansen,
B.; Luthman, K. Dipeptidomimetic ketomethylene isosteres as pro-
moieties for drug transport via the human intestinal di-/tripeptide
transporter hPEPT1: design, synthesis, stability, and biological investiga-
tions. J. Med. Chem. 2004, 47, 4755–4765.
(11) Bailey, P. D.; Boyd, C. A. R.; Bronk, J. R.; Collier, I. D.;
Meredith, D.; Morgan, K. M.; Temple, C. S. How to make drugs orally
active: a substrate template for peptide transporter PepT1. Angew. Chem.
2000, 39, 506–508.
(12) Fei, Y. J.; Kanai, Y.; Nussberger, S.; Ganapathy, V.; Leibach,
F. H.; Romero, M. F.; Singh, S. K.; Boron, W. F.; Hediger, M. A.
(30) Brandsch, M. Transport of drugs by proton-coupled peptide
transporters: pearls and pitfalls. Expert Opin. Drug Metab. Toxicol. 2009,
5, 887–905.
(31) Biegel, A.; Gebauer, S.; Hartrodt, B.; Brandsch, M.; Neubert, K.;
Thondorf, I. Three-dimensional quantitative structure-activity rela-
tionship analyses of beta-lactam antibiotics and tripeptides as substrates
2431
dx.doi.org/10.1021/jm1015704 |J. Med. Chem. 2011, 54, 2422–2432