ACS Medicinal Chemistry Letters
Letter
Optimization of O3-acyl kojic acid derivatives as potent and selective
human neutrophil elastase inhibitors. J. Med. Chem. 2013, 56, 9802−
9806.
Author Contributions
The manuscript was written through contributions of all
authors, who have given approval to the final version of the
manuscript.
(15) Martyn, D. C.; Moore, M. J.; Abell, A. D. Succinimide and
saccharin-based enzyme-activated inhibitors of serine proteases. Curr.
Pharm. Des. 1999, 5, 405−415.
Notes
The authors declare no competing financial interest.
(16) Gutschow, M.; Pietsch, M.; Themann, A.; Fahrig, J.; Schulze, B.
̈
2,4,5-Triphenylisothiazol-3(2H)-one 1,1-dioxides as inhibitors of
human leukocyte elastase. J. Enzyme Inhib. Med. Chem. 2005, 20,
341−347.
ACKNOWLEDGMENTS
The authors thank Martin Mangold for providing cell lysates
■
and Anke Guhler for technical assistance.
́
(17) Sienczyk, M.; Oleksyszyn, J. Irreversible inhibition of serine
̈
proteases - design and in vivo activity of diaryl alpha-amino-
phosphonate derivatives. Curr. Med. Chem. 2009, 16, 1673−1687.
(18) Oleksyszyn, J.; Boduszek, B.; Kam, C. M.; Powers, J. C. Novel
amidine-containing peptidyl phosphonates as irreversible inhibitors for
blood coagulation and related serine proteases. J. Med. Chem. 1994, 37,
226−231.
ABBREVIATIONS
■
AA, amino acid; BODIPY, boron-dipyrromethene; DIPEA,
N,N-diisopropylethylamine; HBTU, 2-(1H-benzotriazol-1-yl)-
1,1,3,3-tetramethyluronium hexafluorophosphate; HEK, human
embryonic kidney; HLE, human leukocyte elastase; PPE,
porcine pancreatic elastase
́ ́
(19) Sabido, E.; Tarrago, T.; Giralt, E. Towards the identification of
unknown neuropeptide precursor-processing enzymes: Design and
synthesis of a new family of dipeptidyl phosphonate activity probes for
substrate-based protease identification. Bioorg. Med. Chem. 2010, 18,
8350−8355.
(20) Zou, F.; Schmon, M.; Sienczyk, M.; Grzywa, R.; Palesch, D.;
Boehm, B. O.; Sun, Z. L.; Watts, C.; Schirmbeck, R.; Burster, T.
Application of a novel highly sensitive activity-based probe for
detection of cathepsin G. Anal. Biochem. 2012, 421, 667−672.
(21) Guarino, C.; Legowska, M.; Epinette, C.; Kellenberger, C.;
REFERENCES
■
(1) Korkmaz, B.; Moreau, T.; Gauthier, F. Neutrophil elastase,
proteinase 3 and cathepsin G: Physicochemical properties, activity and
physiopathological functions. Biochimie 2008, 90, 227−242.
(2) Korkmaz, B.; Horwitz, M. S.; Jenne, D. E.; Gauthier, F.
Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic
targets in human diseases. Pharmacol. Rev. 2010, 62, 726−759.
(3) Pipoly, D. J.; Crouch, E. C. Degradation of native type IV
procollagen by human neutrophil elastase. Implications for leukocyte-
mediated degradation of basement membranes. Biochemistry 1987, 26,
5748−5754.
(4) Owen, C. A.; Campbell, E. J. Neutrophil proteinases and matrix
degradation. The cell biology of pericellular proteolysis. Semin. Cell
Biol. 1995, 6, 367−376.
(5) Ungurs, M. J.; Sinden, N. J.; Stockley, R. A. Progranulin is a
substrate for neutrophil-elastase and proteinase-3 in the airway and its
concentration correlates with mediators of airway inflammation in
COPD. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 306, L80−L87.
(6) Lucas, S. D.; Costa, E.; Guedes, R. C.; Moreira, R. Targeting
COPD: Advances on low-molecular-weight inhibitors of human
neutrophil elastase. Med. Res. Rev. 2013, 33, E73−101.
́
Dallet-Choisy, S.; Sienczyk, M.; Gabant, G.; Cadene, M.; Zoidakis, J.;
Vlahou, A.; Wysocka, M.; Marchand-Adam, S.; Jenne, D. E.; Lesner,
A.; Gauthier, F.; Korkmaz, B. New selective peptidyl di(chlorophenyl)
phosphonate esters for visualizing and blocking neutrophil proteinase
3 in human diseases. J. Biol. Chem. 2014, 289, 31777−31791.
(22) Serim, S.; Baer, P.; Verhelst, S. H. Mixed alkyl aryl phosphonate
esters as quenched fluorescent activity-based probes for serine
proteases. Org. Biomol. Chem. 2015, 13, 2293−2299.
(23) Haußler, D.; Mangold, M.; Furtmann, N.; Braune, A.; Blaut, M.;
̈
Bajorath, J.; Stirnberg, M.; Gutschow, M. Phosphono bisbenzguani-
̈
dines as irreversible dipeptidomimetic inhibitors and activity-based
probes of matriptase-2. Chem. - Eur. J. 2016, 22, 8525−8535.
(24) Penczek, A.; Sienczyk, M.; Wirtz, C. R.; Burster, T. Cell surface
cathepsin G activity differs between human natural killer cell subsets.
Immunol. Lett. 2016, 179, 80−84.
(7) Henriksen, P. A. The potential of neutrophil elastase inhibitors as
anti-inflammatory therapies. Curr. Opin. Hematol. 2014, 21, 23−28.
(8) Langhorst, J.; Elsenbruch, S.; Koelzer, J.; Rueffer, A.; Michalsen,
A.; Dobos, G. J. Noninvasive markers in the assessment of intestinal
inflammation in inflammatory bowel diseases: performance of fecal
lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices.
Am. J. Gastroenterol. 2008, 103, 162−169.
(25) Haußler, D.; Schulz-Fincke, A. C.; Beckmann, A. M.; Keils, A.;
̈
Gilberg, E.; Mangold, M.; Bajorath, J.; Stirnberg, M.; Steinmetzer, T.;
Gutschow, M. A fluorescent-labeled phosphono bisbenzguanidine as
̈
an activity-based probe for matriptase. Chem. - Eur. J. 2017, 23, 5205−
5209.
(9) Nakayama, Y.; Odagaki, Y.; Fujita, S.; Matsuoka, S.; Hamanaka,
N.; Nakai, H.; Toda, M. Clarification of mechanism of human sputum
elastase inhibition by a new inhibitor, ONO-5046, using electrospray
ionization mass spectrometry. Bioorg. Med. Chem. Lett. 2002, 12,
2349−2353.
(10) Gehrig, S.; Mall, M. A.; Schultz, C. Spatially resolved monitoring
of neutrophil elastase activity with ratiometric fluorescent reporters.
Angew. Chem., Int. Ed. 2012, 51, 6258−6261.
(11) Avlonitis, N.; Debunne, M.; Aslam, T.; McDonald, N.; Haslett,
C.; Dhaliwal, K.; Bradley, M. Highly specific, multi-branched
fluorescent reporters for analysis of human neutrophil elastase. Org.
Biomol. Chem. 2013, 11, 4414−4418.
(26) Gilmore, B. F.; Quinn, D. J.; Duff, T.; Cathcart, G. R.; Scott, C.
J.; Walker, B. Expedited solid-phase synthesis of fluorescently labeled
and biotinylated aminoalkane diphenyl phosphonate affinity probes for
chymotrypsin- and elastase-like serine proteases. Bioconjugate Chem.
2009, 20, 2098−2105.
(27) Edgington-Mitchell, L. E.; Barlow, N.; Aurelio, L.; Samha, A.;
Szabo, M.; Graham, B.; Bunnett, N. Fluorescent diphenylphospho-
nate-based probes for detection of serine protease activity during
inflammation. Bioorg. Med. Chem. Lett. 2017, 27, 254−260.
(28) Grzywa, R.; Burchacka, E.; Łęcka, M.; Winiarski, Ł.; Walczak,
M.; Łupicka-Słowik, A.; Wysocka, M.; Burster, T.; Bobrek, K.;
́
Csencsits-Smith, K.; Lesner, A.; Sienczyk, M. Synthesis of novel
(12) Wei, A. Z.; Mayr, I.; Bode, W. The refined 2.3 Å crystal structure
of human leukocyte elastase in a complex with a valine chloromethyl
ketone inhibitor. FEBS Lett. 1988, 234, 367−373.
phosphonic-type activity-based probes for neutrophil serine proteases
and their application in spleen lysates of different organisms.
ChemBioChem 2014, 15, 2605−2612.
(13) Ruivo, E. F.; Gonca̧ lves, L. M.; Carvalho, L. A.; Guedes, R. C.;
(29) Kasperkiewicz, P.; Poreba, M.; Snipas, S. J.; Parker, H.;
Winterbourn, C. C.; Salvesen, G. S.; Drag, M. Design of ultrasensitive
probes for human neutrophil elastase through hybrid combinatorial
substrate library profiling. Proc. Natl. Acad. Sci. U. S. A. 2014, 111,
2518−2523.
Hofbauer, S.; Brito, J. A.; Archer, M.; Moreira, R.; Lucas, S. D.
Clickable 4-oxo-β-lactam-based selective probing for human neutro-
phil elastase related proteomes. ChemMedChem 2016, 11, 2037−2042.
(14) Lucas, S. D.; Gonca̧ lves, L. M.; Carvalho, L. A.; Correia, H. F.;
Da Costa, E. M.; Guedes, R. A.; Moreira, R.; Guedes, R. C.
E
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX