D. M. Zink, T. Baumann, M. Nieger, S. Bräse
SHORT COMMUNICATION
[M+], 491 (6) [M+ – 2 N2], 333 (13), 300 (15), 221 (30), 193 (100),
165 (48). HR-EIMS: calcd. for C34H25N6P 548.1878; found
548.1877.
Acknowledgments
Financial support from the Deutsche Forschungs-Gemeinschaft
(DFG) funded transregional collaborative research center SFB/
TRR 88 “3MET” is acknowledged.
[{Tris(5-butyl-1-phenyl-1H-1,2,3-triazol-4-yl)phosphane}2zinc]-
[Zn2Br6] (6): Zinc bromide (104 mg, 0.47 mmol, 1.00 equiv.)
and tris(5-butyl-1-phenyl-1H-1,2,3-triazol-4-yl)phosphane (4h)
(300 mg, 0.47 mmol, 1.00 equiv.) were dissolved under nitrogen in
dry dichloromethane (8 mL). The solution was stirred at room tem-
perature for 12 h. The complex was precipitated in cyclohexane,
filtered and dried in vacuo and obtained as a white solid (270 mg,
0.14 mmol, 30%). 1H NMR (400 MHz, [D6]DMSO): δ = 0.63 (t, J
= 7.3 Hz, 9 H, CH3), 1.02–1.14 (m, 24 H, CH3CH2CH2), 2.87–2.96
[1] For example, palladium catalysis: a) E. M. Schuster, M. Boto-
shansky, M. Gandelman, Organometallics 2009, 28, 7001–7005;
b) D. Popa, R. Marcos, S. Sayalero, A. Vidal-Ferran, M. A.
Pericas, Adv. Synth. Catal. 2009, 351, 1539–1556; c) E. M.
Schuster, M. Botoshansky, M. Gandelman, Angew. Chem.
2008, 120, 4631; Angew. Chem. Int. Ed. 2008, 47, 4555–455; d)
R. J. Detz, S. Arevalo Heras, R. De Gelder, P. W. N. M.
Van Leeuwen, H. Hiemstra, J. N. H. Joon, Inorg. Chim. Acta
2002, 330, 38–43.
(m, 12 H, CH3CH2CH2CH2), 7.51–7.71 (m, 30 H, Ar-H) ppm. 13
C
NMR (100 MHz, [D6]DMSO): δ = 13.2 (+, CH3), 21.5 (–,
CH3CH2CH2CH2), 22.3 (–, CH3CH2), 30.0 (–, CH3CH2CH2),
125.1 (+, C-Ar), 125.4 (+, C-Ar), 129.6 (+, C-Ar), 129.6 (+, C-Ar),
[2] D. Liu, W. Gao, Q. Dai, X. Zhang, Org. Lett. 2005, 7, 4907–
4910.
130.1 (+, C-Ar), 135.3 (Cquat), 136.5 (d, 2JCP = 4.9 Hz, Cquat), 145.5
[3] Q. Dai, W. Gao, D. Liu, L. M. Kapes, X. Zhang, J. Org. Chem.
2006, 71, 3928–3934.
1
(d, JCP = 27.8 Hz, Cquat) ppm. IR (drift): ν = 2957 (vw), 2929
˜
[4] a) H. Oki, I. Oura, T. Nakamura, K. Ogata, S. Fukuzawa, Tet-
rahedron: Asymmetry 2009, 20, 2185–2191; b) M. Kato, T.
Nakamura, K. Ogata, S. Fukuzawa, Eur. J. Org. Chem. 2009,
5232–5238; c) M. Kato, H. Oki, K. Ogata, S. Fukuzawa, Syn-
lett 2009, 1299–1302; d) S. Fukuzawa, H. Oki, Org. Lett. 2008,
10, 1747–1750; e) S. Fukuzawa, H. Oki, M. Hosaka, J. Sugas-
awa, S. Kikuchi, Org. Lett. 2007, 9, 5557–5560; f) F. Dolhem,
M. J. Johansson, T. Antonsson, N. Kann, J. Comb. Chem. 2007,
9, 477–486.
(vw), 2870 (vw), 1595 (w), 1497 (w), 1458 (w), 1012 (w), 768 (w),
692 (w), 577 (w), 515 (w) cm–1. MS (FAB): m/z (%) = 1160 (Ͻ1)
[LZn2Br5], 1189 (Ͻ1) [LZn2Br4], 848 (11) [LZn2Br], 776 (67)
[LZnBr], 160 (100); L = 4h. C72H84Br6N18P2Zn3 (1939.09): calcd.
C 44.60, H 4.37, N 13.00; found C 44.40, H 4.47, N 12.61.
Crystal Structure Determination of 4g, 6 and 7: The single-crystal
X-ray diffraction study was carried out with a Bruker-Nonius
Kappa-CCD diffractometer at 123(2) K by using Mo-Kα radiation
(λ = 0.71073 Å). Direct methods (SHELXS-97[18]) were used for
structure solution, and refinement was carried out by using
SHELXL-97[18] (full-matrix least squares on F2). Non-hydrogen
atoms were refined anisotropically, hydrogen atoms were localized
by difference electron density determination and refined by using
a riding model. A semiempirical absorption correction was applied
for 6 and 7. In 7 the solvent CH2Cl2 is disordered about a centre
of symmetry. 4g: Colourless crystals, C42H30N9P, M = 691.72, crys-
tal size 0.32ϫ0.16ϫ0.08 mm, monoclinic, space group P21/c (No.
14), a = 16.841(1) Å, b = 9.837(1) Å, c = 21.057(1) Å, β = 93.80(1)°,
V = 3480.7(4) Å3, Z = 4 ρ(calcd.) = 1.320 Mgm–3, F(000) = 1440,
μ = 0.125 mm–1, 66160 reflections (2θmax = 55°), 7971 unique (Rint
= 0.046), 469 parameters, R1 [IϾ2σ(I)] = 0.045, wR2 (all data) =
0.114, S = 1.04, largest diff. peak/hole 0.356/–0.302 eÅ–3. 6: Pale
yellow crystals, C72H84N18P2Zn2+ – Br6Zn22–, M = 1939.08, crystal
[5] A. Krasinski, V. V. Fokin, K. B. Sharpless, Org. Lett. 2004, 6,
1237–1240.
[6] S. G. A. van Assema, C. G. J. Tazelaar, G. B. de Jong, J. H.
van Maarseveen, M. Schakel, M. Lutz, A. L. Spek, J. C.
Slootweg, K. Lammertsma, Organometallics 2008, 27, 3210–
3215.
[7] A. L. Rheingold, L. M. Liable-Sands, S. Trofimenko, Angew.
Chem. 2000, 112, 3459; Angew. Chem. Int. Ed. 2000, 39, 3321–
3324.
[8] A. L. Rheingold, L. M. Liable-Sands, S. Trofimenko, Inorg.
Chim. Acta 2002, 330, 38–43.
[9] This has been already suggested by Zhang et al.:[2] “It is worthy
of note that the ligand synthesis could be shortened into a one-
pot operation with comparable crude yield of the desired product
by directly quenching the intermediate 5 with a chlorophosphane.
The isolation of triazole 6 prior to installation of the phosphanyl
substituents is solely because of the ease of purification of the
final phosphane ligands.” We did not observe any problems dur-
ing purification.
¯
size 0.24ϫ0.09ϫ0.03 mm, triclinic, space group P1 (No. 2), a =
12.1596(9) Å, b = 12.5221(9) Å, c = 14.8539(18) Å, α = 94.050(9)°,
β = 101.684(7)°, γ = 117.543(5)°, V = 1928.4(3) Å3, Z = 1, ρ(calcd.)
= 1.670 Mgm–3, F(000) = 972, μ = 4.130 mm–1, 22355 reflections
(2θmax = 50°), 6761 unique (Rint = 0.082), 457 parameters, R1
[IϾ2σ(I)] = 0.063, wR2 (all data) = 0.146, S = 1.06, largest diff.
peak/hole 0.950/–0.593 eÅ–3. 7: Yellow crystals, C42H30I2N9PZn –
0.5CH2Cl2, M = 1053.35, crystal size 0.24ϫ0.12ϫ0.08 mm, tri-
[10] SAFETY: Whereas ionic azides such as sodium azide are rela-
tively stable, carbon-bound or heavy-metal azides are subject
to thermal – sometimes explosive – decomposition. Some or-
ganic and other covalent azides are classified as toxic and
highly explosive, and appropriate safety measures must be
taken at all times: S. Bräse, C. Gil, K. Knepper, V. Zimmer-
mann, Angew. Chem. 2005, 117, 5320; Angew. Chem. Int. Ed.
2005, 44, 5188.
[11] Comments: Phosphorus trichloride is controlled under the
Chemical Weapons Convention. PCl3 is toxic, with a concen-
tration of 600 ppm being lethal in just a few minutes. It is clas-
sified as very toxic and corrosive under EU Directive 67/548/
EEC, and the risk phrases R14, R26/28, R35 and R48/20 are
obligatory.
¯
clinic, space group P1 (No. 2), a = 12.073(1) Å, b = 12.602(1) Å, c
= 14.906(2) Å, α = 110.38(1)°, β = 94.94(1)°, γ = 95.19(1)°, V =
2100.3(4) Å3, Z = 2, ρ(calcd.) = 1.666 Mgm–3, F(000) = 1034, μ =
2.199 mm–1, 27829 reflections (2θmax = 55°), 9602 unique (Rint
=
0.035), 514 parameters, 3 restraints, R1 [IϾ2σ(I)] = 0.037, wR2 (all
data) = 0.079, S = 1.03, largest diff. peak/hole 0.987/–1.266 eÅ–3.
CCDC-799089 (4g), -799090 (6) and -799091 (7) contain the sup-
plementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[12] For a review: I. Kuzu, I. Krummenacher, J. Meyer, F. Armbrus-
ter, F. Breher, Dalton Trans. 2008, 5836–5865.
[13] a) C. J. Tokar, P. B. Kettler, W. B. Tolman, Organometallics
1992, 11, 2737–2739; b) D. D. LeCloux, C. J. Tokar, M. Osawa,
R. P. Houser, M. C. Keyes, W. B. Tolman, Organometallics
1994, 13, 2855–2866; c) V. S. Joshi, V. K. Kale, K. M. Sathe,
A. Sarker, S. S. Tavale, C. G. Suresh, Organometallics 1991, 10,
2898–2902.
Supporting Information (see footnote on the first page of this arti-
cle): Analytical data for all prepared compounds (4–7).
1436
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 1432–1437