direct arylation of a CÀH bond to construct a variety of CÀC
bonds.4 However, selective direct arylation of substrates with
similar CÀH bonds tends to require various auxiliary ligands.
Over the past decade, more effort has been devoted to
substrate-directed metal-catalyzed CÀH bond arylation5
as a complementary tool for standard cross-coupling
reactions. Consequently, most nitrogen-containing groups
and carboxyl groups have been explored for directing
metal-catalyzed CÀH bond arylation. The majority of
the directing groups, which are necessary for the selective
transformation, often are difficult to attach or remove,
thus limiting these methodologies to particular types of
substrates.5d,e Extending these methodologies to include
other substrates seems to be urgent. Meanwhile, aryl
boronic acids6 and diaryliodonium salts7 were extensively
applied to the arylation of heteroaromatic substrates.
However, aryl boronic acids are expensive or require
multistep preparation, and diaryliodonium salts are not
atom economic and generate waste and purification pro-
blems. Furthermore, direct arylation of ArÀH via CÀH
bond activation has been known to suffer from over-
functionalization or regioselectivity issues.8,5g
Table 1. Monophenylation of 6-Phenyl Purine via Pd-Catalyzed
CÀH Bond Activationa
entry
X (equiv)
Ag source
yield (%)b
1
I (5)
AgOAc
Ag2O
15
2
I (10)
I (10)
I (30)
I (40)
Cl (30)
Br (30)
I (30)
I (30)
I (30)
12
3
AgOAc
AgOAc
AgOAc
AgOAc
AgOAc
AgOAc
AgOAc
AgOTf
20
4
82
5
82
6
N.R.c
N.R.
N.R.
N.R.
40
7
8d
9e
10
a Unless otherwise mentioned, all of the reactions were carried out
with 0.2 mmol of 1a, 5 mol % Pd(OAc)2, 0.4 mmol of Ag source, and 0.5
mL of AcOH in a Schlenk tube at 120 °C for 60 h under a N2 atmosphere.
b Isolated yields. c N.R. = No Reaction. d Without N2 protection. e In
the absence of AcOH.
C6-Arylpurine nucleosides are of particular importance
since they have displayed anti-HCV, cytostatic, and anti-
mycobacterial activities,9 and continued methodological
efforts have been made in recent years. Purine contains
four nitrogen atoms and belongs to a special class of
aromatic heterocycles. To our knowledge, there have been
no reports of purine-directed palladium-catalyzed CÀH
bond activation thus far. During the ongoing course of our
study on the modification of purine analogues10 and
according to the reports on transition-metal-catalyzed
arylation of substrate-directed CÀH bond, we choose
purine as a directing group for CÀH bond arylation with
aryl iodides, since purine may offer a nitrogen atom for
effectively participating in cyclopalladation. Purine is
more challenging than simple pyridine since it possesses
three additional nitrogen atoms that could potentially bind
and poison the catalyst.11 Most importantly, this directing
group is a useful building block for the desired nucleoside
derivatives. This functionalization is highly regiospecific,
thus making the process simple and more synthetically
desirable. This CÀH functionalization approach offers an
alternative strategy for modification of 6-arylpurine deri-
vatives, providing access to molecules that may have great
importance in medicinal chemistry.12
(5) For recent reviews about substrate-directed CÀH arylation, see:
(a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (b)
Daugulis, O.; Do, H.-Q; Shabashov, D. Acc. Chem. Res. 2009, 42,
1074. (c) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2009, 48, 5094. For other recent examples about substrate-
directed CÀH arylation, see:(d) Wasa, M.; Worrell, B. T.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2010, 49, 1275. (e) Chernyak, N.; Dudnik, A. S.;
Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 8270. (f) Yeung,
C. S.; Zhao, X.; Borduas, N.; Dong, V. M. Chem. Sci. 2010, 1, 331. (g)
Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837.
(h) Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura, E. J. Am.
Chem. Soc. 2008, 130, 5858. (i) Yoshikai, N.; Matsumoto, A.; Norinder,
J.; Nakamura, E. Angew. Chem., Int. Ed. 2009, 48, 2925.
(6) (a) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc.
2008, 130, 7190. (b) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.;
Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007,
129, 3510.
(7) (a) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am.
Chem. Soc. 2005, 127, 7330. (b) Deprez, N. R.; Kalyani, D.; Krause, A.;
Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972. (c) Deprez, N. R.;
Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234. (d) Xiao, B.; Fu, Y.;
Xu, J.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132,
468. (e) Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44,
4046. (f) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc.
2008, 130, 8172. (g) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593.
(8) (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem.
Soc. 2006, 128, 6790. (b) Vickers, C. J.; Mei, T.-S.; Yu, J.-Q. Org. Lett.
2010, 12, 2511.
Withthisinmind, weinitially carriedout our experiment
by choosing 6-phenyl-9-benzylpurine (1a) as the substrate
and Pd(OAc)2 as the catalyst (Table 1). To our delight, we
found the phenylation of 1a took place in the presence of a
catalytic amount of Pd(OAc)2, 5 equiv of PhI, and 2 equiv
(9) Bakkestuen, A. K.; Gundersen, L. L.; Utenova, B. T. J. Med.
Chem. 2005, 48, 2710.
(10) (a) Qu, G. R.; Mao, Z. J.; Niu, H. Y.; Wang, D. C.; Xia, C.; Guo,
H. M. Org. Lett. 2009, 11, 1745. (b) Guo, H. M.; Wu, Y. Y.; Niu, H. Y.;
Wang, D. C.; Qu, G. R. J. Org. Chem. 2010, 75, 3863. (c) Guo, H. M.; Li,
P.; Niu, H. Y.; Wang, D. C.; Qu, G. R. J. Org. Chem. 2010, 75, 6016. (d)
Qu, G. R.; Xia, R.; Yang, X. N.; Li, J. G.; Wang, D. C.; Guo, H. M. J.
Org. Chem. 2008, 73, 2416. (e) Qu, G. R.; Ren, B.; Niu, H. Y.; Mao, Z. J.;
Guo, H. M. J. Org. Chem. 2008, 73, 2450. (f) Guo, H. M.; Xin, P. Y.;
Niu, H. Y.; Wang, D. C.; Jiang, Y.; Qu, G. R. Green Chem. 2010, 12,
2131. (g) Qu, G. R.; Wu, J.; Wu, Y. Y.; Zhang, F.; Guo, H. M. Green
Chem. 2009, 11, 760. (h) Qu, G. R.; Zhao, L.; Wang, D. C.; Wu, J.; Guo,
H. M. Green Chem. 2008, 10, 287. (i) Guo, H. M.; Wu, J.; Niu, H. Y.;
Wang, D. C.; Zhang, F.; Qu, G. R. Bioorg. Med. Chem. Lett. 2010, 20,
3098.
(11) Leclerc, J.-P.; Fagnou, K. Angew. Chem., Int. Ed. 2006, 45, 7781.
ꢀ
ꢁꢀ
ꢀ
(12) (a) Hocek, M.; Holy, A.; Votruba, I.; Dvorakova, H. J. Med.
ꢁ
Chem. 2000, 43, 1817. (b) Hocek, M.; Naus, P.; Pohl, R.; Votruba, I.;
Furman, P. A.; Tharnish, P. M.; Otto, M. J. J. Med. Chem. 2005, 48,
5869. (c) Gundersen, L.-L.; Nissen-Meyer, J.; Spilsberg, B. J. Med.
Chem. 2002, 45, 1383. (d) Andresen, G.; Gundersen, L.-L.; Nissen-
Meyer, J.; Rise, F.; Spilsberg, B. Bioorg. Med. Chem. Lett. 2002, 12, 567.
(e) Hauser, D. R. J.; Scior, T.; Domeyer, D. M.; Kammerer, B.; Laufer,
S. A. J. Med. Chem. 2007, 50, 2060.
Org. Lett., Vol. 13, No. 8, 2011
2009