We acknowledge the FRFCU and NSFC (20821001,
20731005, U0934003 and 20903121) for financial support.
Notes and references
z Ag6L6–SbF6: C210H162Ag6F36N6P12Sb6, monoclinic, P21/n, a =
18.4879(6), b = 34.8299(11), c = 20.2362(10) A, b = 102.860(4)1,
V = 12703.9(9) A3, Z = 2, dc = 1.360 g cmꢀ3, R1 = 0.1116, wR2 =
0.2544 (obs. data) Ag–TFA: C43H39Ag2F6NO6P2, monoclinic, P21/c,
a = 11.3131(6), b = 21.5140(9), c = 18.1697(8) A, b = 90.950(5)1
V = 4421.7(4) A3, Z = 4, dc = 1.588 g cmꢀ3, R1 = 0.0766, wR2
=
0.2011 (obs. data) Ag–OTs: C50H42Ag2Cl3NO6P2S2, monoclinic,
P21/n, a = 10.6348(5), b = 24.7251(11), c = 19.4535(10) A, b =
=
Fig.
3 Potential 1D–3D ring-opening polymers of the tubular
103.775(5)1, V = 4968.1(4) A3, Z = 4, dc = 1.606 g cmꢀ3, R1
0.0550, wR2 = 0.1651 (obs. data)
architecture.
1 V. G. Organoab and D. M. Rudkevich, Chem. Commun., 2007,
3891.
[Ag2L(OTs)2]n * (CHCl3)n (Ag–OTs * CHCl3), respectively.
X-ray single-crystal analyses were performed to reveal unam-
biguously that both Ag–TFA and Ag–OTs have 2D (4,82)-type
networks consisting of dimeric L2Ag4 secondary building
blocks (Fig. 4, see also supporting informationw).z In these
structures, the nodes are bridged dimeric Ag2 species. In other
words, the L2Ag4 subunits are doubly bridged by TFAꢀ and
water in Ag–TFA, while they are doubly bridged by OTsꢀ
anions in Ag–OTs. In all the tubular architecture and the
polymeric structures of Ag–TFA and Ag–OTs, a divergent
conformation is adopted among possible orientations of the
lone pairs for meta-diphosphine groups (Fig. 4).13
2 M. Tominaga and M. Fujita, Bull. Chem. Soc. Jpn., 2007, 80, 1473.
3 A. Kumar, S.-S. Sun and A. J. Lees, Coord. Chem. Rev., 2008, 252,
922; J. H. K. Yip and J. Prabhavarthy, Angew. Chem., Int. Ed.,
2001, 40, 2159; H. Jiang and W. Lin, J. Am. Chem. Soc., 2003, 125,
8084.
4 S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100,
853; J. Y. Zhang, P. W. Miller, M. Nieuwenhuyzen and
S. L. James, Chem.–Eur. J., 2006, 12, 2448; S. L. James, D. M.
P. Mingos, A. J. P. White and D. J. Williams, Chem. Commun.,
1998, 2323.
5 M. Fujita, S.-Y. Yu, T. Kusukawa, H. Fumaki, K. Ogura and
K. Yamaguchi, Angew. Chem., Int. Ed., 1998, 37, 2082;
P. W. Miller, M. Nieuwenhuyzen, J. P. H. Charmant and
S. L. James, CrystEngComm, 2004, 6, 408.
The above results suggest the dimeric species existing in
solution may be connected by bridging coordinating anions to
form 2D polymeric structures under specific conditions. The
strategy paves a way to novel 2D or 3D phosphine-based
polymeric structures, only a few examples of which are available
so far.16,19 It is worth mentioning that the polymeric structures
can be transformed into the discrete tubular structures in solution
by introducing the anions like SbF6ꢀ, which is evidenced by the
31P NMR spectrum of AgSbF6 :AgTFA:L = 1 :1:2 showing a
characteristic doublet of doublets of the tubular structures.
In summary, an unprecedented phosphine-based M6L6
coordination tubular architecture has been quantitatively
assembled based on a T-shaped pyridyl diphosphine ligand
and tricoordinate Ag(I) ions. The tubular structures represent
a discrete molecular architecture of a number of polymeric
structures assembled from dimeric building blocks, which may
guide future syntheses of novel discrete and polymeric structures.
Studies along this line are going on in our lab.
6 K. Suzuki, M. Tominaga, M. Kawano and M. Fujita, Chem.
Commun., 2009, 1638.
7 C. L. Chen, J. Y. Zhang and C. Y. Su, Eur. J. Inorg. Chem., 2007,
2997.
8 M. Aoyagi, K. Biradha and M. Fujita, J. Am. Chem. Soc., 1999,
121, 7457; A. K. Bar, R. Chakrabarty, G. Mostafa and
P. S. Mukherjee, Angew. Chem., Int. Ed., 2008, 47, 8455;
S. Tashiro, M. Tominaga, T. Kusukawa, M. Kawano,
S. Sakamoto, K. Yamaguchi and M. Fujita, Angew. Chem., Int.
Ed., 2003, 42, 3267; M. Tominaga, M. Kato, T. Okano,
S. Sakamoto, K. Yamaguchi and M. Fujita, Chem. Lett., 2003,
32, 1012; T. Yamaguchi, S. Tashiro, M. Tominaga, M. Kawano,
T. Ozeki and M. Fujita, J. Am. Chem. Soc., 2004, 126, 10818.
9 C. Y. Su, M. D. Smith and H. C. zur Loye, Angew. Chem., Int. Ed.,
2003, 42, 4085.
10 T. Yamaguchi, S. Tashiro, M. Tominaga, M. Kawano, T. Ozeki
and M. Fujita, Chem.–Asian J., 2007, 2, 468.
11 B. Breit, Angew. Chem., Int. Ed., 2005, 44, 6816; X.-B. Jiang, P. W.
N. M. van Leeuwen and J. N. H. Reek, Chem. Commun., 2007,
2287; S. L. James, Chem. Soc. Rev., 2009, 38, 1744.
12 This signal may be possibly superimposed of a singly charged
species L3Ag3(SbF6)2
+
.
13 P. W. Miller, M. Nieuwenhuyzen, J. P. H. Charmant and
S. L. James, Inorg. Chem., 2008, 47, 8367.
14 R. L. Paul, S. P. Argent, J. C. Jeffery, L. P. Harding, J. M. Lynam
and M. D. Ward, Dalton Trans., 2004, 3453.
15 For examples, see: M. C. Brandys and R. J. Puddephatt, J. Am.
Chem. Soc., 2001, 123, 4839; S. L. James, Macromol. Symp., 2004,
209, 119.
16 X. B Wang, J. Z. Feng, J. Huang, J. Y. Zhang, M. Pan and
C. Y. Su, CrystEngComm, 2010, 12, 725.
17 J. P. Zhang, S. L. Zheng, X. C. Huang and X. M. Chen, Angew.
Chem., Int. Ed., 2004, 43, 206.
18 S.-W. A. Fong, J. J. Vittal, W. Henderson, T. S. A. Hor,
A. G. Oliver and C. E. F. Rickard, Chem. Commun., 2001, 421.
19 S. M. Humphrey, P. K. Allan, S. E. Oungoulian, M. S. Ironside
and E. R. Wise, Dalton Trans., 2009, 2298; X. Xu,
M. Nieuwenhuzen and S. L. James, Angew. Chem., Int. Ed.,
2002, 41, 764; M.-C. Brandys and R. J. Puddephatt, J. Am. Chem.
Soc., 2002, 124, 3946; N. Y. Li, Z. G. Ren, D. Liu, R. X. Yuan,
L. P. Wei, L. Zhang, H. X. Li and J. P. Lang, Dalton Trans., 2010,
39, 4213.
Fig. 4 Formation of the tubular architectures and 2D networks, and
a divergent dimeric synthon formed by L and Ag+ according to the
orientations of the lone pairs for meta-diphosphine groups.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3849–3851 3851