120
K.M. Vyas et al. / Journal of Molecular Structure 990 (2011) 110–120
[4] N. Raman, A. Kulandaisamy, A. Shunmugasundaram, K. Jeyasubramanian,
Transit. Met. Chem. 26 (2001) 131–135.
[5] T. Yoshikuni, J. Mol, Catal. A: Chem. 148 (1999) 285–288.
[6] B.A. Uzoukwu, P.U. Adiukwu, S.S. Al-Juaid, P.B. Hitchcock, J.D. Smith, Inorg.
Chim. Acta 250 (1996) 173–176.
[7] A.K. El-Sawaf, D.X. West, Transit. Met. Chem. 23 (1998) 417–421.
[8] N. Kalarani, S. Sangeetha, P. Kamalakannan, D. Venkappayya, Russ. J. Coord.
Chem. 29 (2003) 845–851.
[9] O.N. Kataeva, A.T. Gubaidullin, I.A. Litvinov, O.A. Lodochnikova, L.R. Islamov,
A.I. Movchan, G.A. Chmutova, J. Mol. Struct. 610 (2002) 175–179.
[10] A.L. Rheingold, W. King, Inorg. Chem. 28 (1998) 1715–1719.
[11] C. Nather, J. Greve, I. Jeb, Chem. Mater. 14 (2002) 4536–4542.
[12] Xiangyun Xie, Lang Liu, Dianzeng Jia, Jixi Guo, Dongling Wu, Xiaolin Xie, New J.
Chem. 33 (2009) 2232–2240.
the Schiff base (PMP-T) used in the present study on the germina-
tion of wheat (Triticum aestivum L.).
The germination study of seed was carried out in a pot experi-
ments. In 1st pot, seeds were grown only in water as blank. In 2nd
pot, seeds were grown in water + alcohol mixture and in 3rd pot 1%
ligand PMP-T was dissolved in alcohol and was mixed with soil and
then seeds were grown in that soil using water. The identical con-
ditions were provided to all the three pots. The length of the plants
were measured every 7 days interval. The results obtained are tab-
ulated below (Table 13) clearly indicating up to 50% inhibition by
the PMP-T.
[13] F. Yakuphanoglua, M. Sekerci, J. Mol. Struct. 751 (2005) 200–203.
[14] P.F. Liguori, A. Valentini, M. Palma, A. Bellusci, S. Bernardini, M. Ghedini, M.L.
Panno, C. Pettinari, F. Marchetti, A. Crispini, D. Pucci, Dalton Trans. (2010)
4205–4212.
Supporting information available
[15] R.N. Jadeja, J.R. Shah, Polyhedron 26 (2007) 1677–1685.
[16] R.N. Jadeja, J.R. Shah, E. Suresh, P. Paul, Polyhedron 23 (2004) 2465–2474.
[17] R.J. Yadav, K.M. Vyas, R.N. Jadeja, J. Coord. Chem. 63 (2010) 1820–1831.
[18] K.M. Vyas, V.K. Shah, R.N. Jadeja, J. Coord. Chem., in press.
[19] W.L.F. Armarego, D.D. Perrin, Purification of Laboratory Chemicals, fourth ed.,
The Bath Press, Butterworth–Heinemann Publication, 1997.
[20] G.M. Sheldrick, SHELXS86, Program for crystal structure determination,
University of Gottingen, Federal Republic of Germany, 1986.
[21] C.K. Johnson ORTEP II; Report ORNL-5138, Oak Ridge National Laboratory, Oak
Ridge, TN, 1976.
CCDC 795607–795609 contain the supplementary crystallo-
graphic data for the ligands (PMP-BA, MCPMP-T and MCPMP-BA).
Center, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223/
336 033. email: deposit@ccdc.ac.uk.
Acknowledgements
[22] A.L. Spek, PLATON for Windows. September 1999 Version, University of
Utrecht, the Netherlands, 1999.
[23] M. Nardelli, J. Appl. Cryst. 28 (1995) 659.
[24] B.T. Thaker, K.R. Surati, S. Oswal, R.N. Jadeja, V.K. Gupta, Struct. Chem. 18
(2007) 295–310.
[25] H. Temel, U. Cakir, B. Otludil, H.I. Ugras, Syn. React. Inorg. Met. 31 (2001)
1323–1337.
[26] K. Nakamono, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, fifth ed., John Wiley & Sons, New York, 1997.
[27] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier,
Amsterdam, 1984. pp. 355.
The authors are thankful to University Grants Commission, New
Delhi for the financial assistance to this work in terms of major re-
search project to RNJ. They are also thankful to Head, Department
of Chemistry for providing necessary facilities required to carry out
this work. The award of Alembic Research Fellowship to KMV is
also gratefully acknowledged.
[28] A. Syamal, R.L. Dutta, Elementals of Magneto Chemistry, East–West Press Pvt.
Ltd., New Delhi, 2004.
References
[29] A.W. Addison, in: K.D. Karlin, J. Zubieta (Eds.), Copper Coordination Chemistry:
Biochemical and Inorganic Perspectives, Adenine, Guilderland, New York,
1983, p. 109.
[1] (a) Y. Xu, D. Yuan, B. Wu, L. Han, M. Wu, F. Jiang, M. Hong, Cryst. Growth Des. 6
(2006) 1168–1174;;
(b) M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O’Keeffe, O.M.
Yaghi, Acc. Chem. Res. 34 (2001) 319–330.
[2] (a) C. Pettinari, F. Marchetti, R. Pettinari, A. Gindulyte, L. Massa, M. Rossi, F.
Caruso, Eur. J. Inorg. Chem. (2002) 1447–1455;;
(b) C. Pettinari, F. Marchetti, R. Pettinari, V. Vertlib, A. Drozdov, I. Timokhin, S.
Troyanov, Y.-S. Min, D. Kim, Inorg. Chim. Acta 355 (2003) 157–167.
[3] C. Pettinari, F. Marchetti, A. Drozdov, Comprehensive Coordination Chemistry
II, vol. 1, Elsevier, Amsterdam, 2003.
[30] S. Itihoh, N. Kisikawa, R. Suzuki, H.D. Takagi, Dalton Trans. (2005) 1066–1078.
[31] A.J. Bard, L.R. Faulkner, Electrochemical Methods
Applications, John Wiley & Sons, USA, 1980. pp. 229.
– Fundamentals and
[32] Bing-Xi Lu, Shu-xian Li, Ye-wen-Aa, Yan-gang Wang, Human Huagong 30
(2000) 42–43 (Chem Abstr 134 (2001) 311154).
[33] Y. Wang, B. Lu, X. Yu, W. Ye, S. Wang, Chem. J. Internet, 3 (2001) (Chem Abstr,
137(2002) 109238).