Organic Letters
Letter
2015, 137, 964. (i) Kong, W.; Fuentes, N.; Garcia-Dominguez, A.;
Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2015, 54, 2487.
(4) Recent Smiles examples: (a) Chang, X.; Zhang, Q.; Guo, C. Org.
Lett. 2019, 21, 4915. (b) Li, J.; Liu, Z.; Wu, S.; Chen, Y. Org. Lett.
2019, 21, 2077. (c) Faderl, C.; Budde, S.; Kachkovskyi, G.; Rackl, D.;
Reiser, O. J. Org. Chem. 2018, 83, 12192. (d) Costil, R.; Lefebvre, Q.;
Clayden, J. Angew. Chem., Int. Ed. 2017, 56, 14602. (e) Wang, S.-F.;
Cao, X.-P.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 13809. (f) Costil,
R.; Dale, H. J. A.; Fey, N.; Whitcombe, G.; Matlock, J. V.; Clayden, J.
Angew. Chem., Int. Ed. 2017, 56, 12533. (g) Janssen-Mueller, D.;
Singha, S.; Lied, F.; Gottschalk, K.; Glorius, F. Angew. Chem., Int. Ed.
2017, 56, 6276. (h) Bhojgude, S. S.; Roy, T.; Gonnade, R. G.; Biju, A.
T. Org. Lett. 2016, 18, 5424.
(5) (a) Holden, C. A.; Sohel, S. M. A.; Greaney, M. F. Angew. Chem.,
Int. Ed. 2016, 55, 2450. (b) Teskey, C. J.; Sohel, S. M. A.; Bunting, D.
L.; Modha, S. G.; Greaney, M. F. Angew. Chem., Int. Ed. 2017, 56,
5263.
(6) (a) Naito, T.; Dohmori, R.; Nagase, O. Yakugaku Zasshi 1954,
74, 593. (b) Naito, T.; Dohmori, R.; Sano, M. Yakugaku Zasshi 1954,
74, 596 See ref 2b for further references on the Dohmori−Smiles
rearrangement. .
(7) For a recent discussion of concerted SNAr reactions, see:
Rohrbach, S.; Smith, A. J.; Pang, J. H.; Poole, D. L.; Tuttle, T.; Chiba,
(8) Wilson, M. W.; Ault-Justus, S. E.; Hodges, J. C.; Rubin, J. R.
Tetrahedron 1999, 55, 1647.
(9) Loudon, J. D.; Tennant, G. Q. Rev., Chem. Soc. 1964, 18, 389.
(10) Sundberg, R. J.; Blackburn, D. E. J. Org. Chem. 1969, 34, 2799.
(11) Yoshida, T.; Matsuura, N.; Yamamoto, K.; Doi, M.; Shimada,
K.; Morie, T.; Kato, S. Heterocycles 1996, 43, 2701.
There is, however, some limited precedent in the work from
Dohmori and Sundberg, who observed the indazole synthesis
from Smiles products via cinnoline N-oxides.6,9,10 A feasible
pathway is shown in Scheme 3B, whereby the sulfonamide
undergoes acylative Smiles rearrangement to afford 9p, which
can then undergo intramolecular N−N bond formation to
form the cinnoline N-oxide 13. From here, basic hydrolysis of
the cinnoline amide group and dehydration would form the
diazonium intermediate 14, and the intramolecular amination
of enolates analogous to 14 is a well-described method for
synthesizing indazoles.11 A final decarboxylation gives the
product 12.
To conclude, we have described a new application of
sulfonamides that captures their amphiphilic character as
electrophilic arylating and nucleophilic aminating agents. The
transformation is based on classical observations from
Dohmori and coworkers on the facility of desulfonylative
Smiles processes to mimic enolate arylation chemistry. In
contrast with conventional enolate arylations, however, the
process requires no metal catalysts and proceeds under very
simple conditions. In the case of o-nosylamides, a 3-aryl-1H-
indazole synthesis has been developed that involves substantial
changes in bond connectivity to create an important
heteroarene moiety from cheap and readily available starting
materials.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and characterization data for
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the EPSRC for funding.
■
REFERENCES
(1) Sun, C.-L.; Shi, Z.-J. Chem. Rev. 2014, 114, 9219.
(2) Reviews: (a) Holden, C. M.; Greaney, M. F. Chem. - Eur. J. 2017,
23, 8992−9008. (b) Henderson, A. R. P.; Kosowan, J. R.; Wood, T. E.
Can. J. Chem. 2017, 95, 483.
■
(3) Recent desulfonylative Smiles examples: (a) Whalley, D. M.;
Duong, H. A.; Greaney, M. F. Chem. - Eur. J. 2019, 25, 1927.
(b) Rashid, S. O.; Almadhhi, S. S.; Berrisford, D. J.; Raftery, J.;
Vitorica-Yrezabal, I.; Whitehead, G.; Quayle, P. Tetrahedron 2019, 75,
2413. (c) Bujok, R.; Makosza, M. Synthesis 2019, 51, 3109.
(d) Monos, T. M.; McAtee, R. C.; Stephenson, C. R. J. Science
2018, 361, 1369. (e) Coulibali, S.; Godou, T.; Canesi, S. Org. Lett.
2016, 18, 4348. (f) Crossley, S. W.; Martinez, R. M.; Guevara-
Zuluaga, S.; Shenvi, R. A. Org. Lett. 2016, 18, 2620. (g) Douglas, J. J.;
Albright, H.; Sevrin, M. J.; Cole, K. P.; Stephenson, C. R. J. Angew.
Chem., Int. Ed. 2015, 54, 14898. (h) Fuentes, N.; Kong, W.;
Fernandez-Sanchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc.
C
Org. Lett. XXXX, XXX, XXX−XXX