J. R. Bencsik et al. / Bioorg. Med. Chem. Lett. 20 (2010) 7037–7041
7041
4. (a) Li, Q. Expert Opin. Ther. Targets 2007, 17, 1077; (b) Lindsley, C. W.; Barnett, S.
F.; Yaroschak, M.; Bilodeau, M. T.; Layton, M. E. Curr. Top. Med. Chem. 2007, 7,
1349; (c) Lindsley, C. W.; Barnett, S. F.; Layton, M. E.; Bilodeau, M. T. Curr.
Cancer Drug Targets 2008, 8, 7; (d) Lindsley, C. W. Curr. Top. Med. Chem. 2010,
10, 458.
5. Blake, J. F.; Kallan, N. C.; Xiao, D.; Xu, R.; Bencsik, J. R.; Skelton, N. J.; Spencer, K.
L.; Mitchell, I. S.; Woessner, R. D.; Gloor, S. L.; Risom, T.; Gross, S. D.; Martinson,
M.; Morales, T. H.; Vigers, P. A. G.; Brandhuber, B. J. Bioorg. Med. Chem. Lett.
2010, 20, 5607.
6. PKA is known to be an important mediator in the polarization of calcium
channels within the heart which when modulated could cause heart
arrhythmias. (a) Reiken, S.; Lacampagne, A.; Zhou, H.; Kherani, A.; Lehnart, S.
E.; Ward, C.; Haung, F.; Gaburjakova, M.; Gaburjakova, N.; Rosemblit, N.;
Warren, M. S.; He, K.; Yi, G.; Wang, J.; Burkhoff, D.; Vassort, G.; Marks, A. R. J.
Cell Biol. 2003, 160, 919; (b) Saucerman, J. J.; Zhang, J.; Martin, J. C.; Peng, L. X.;
Stenbit, A. E.; Tsien, R. Y.; McCulloch, A. D. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
2923; (c) Zakhary, D. R.; Moravec, C. S.; Bond, M. Circulation 2000, 101, 1459.
7. Rho-associated (ROCK) kinase has been shown to mediate vascular smooth
muscle cell contraction and stimulate vascular smooth muscle proliferation. (a)
Hu, E.; Lee, D. Expert Opin. Ther. Targets 2005, 9, 715; (b) Shimokawa, H.;
Takeshita, A. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1767; In addition there is
literature evidence suggesting that inhibition of ROCK would result in the
counterproductive activation of the PI3K/Akt1 pathway. Wolfrum, S.;
Dendorder, A.; Tikitake, Y.; Stalker, T. J.; Gong, Y.; Scalia, R.; Domaniak, P.;
Liao, J. K. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1842.
34 was progressed into a proof-of-concept tumor growth inhibi-
tion (TGI) study. Female nude mice were subcutaneously im-
planted with PC3-NCI prostate tumor cells and once established
to a tumor size of 150À200 mm3, 34 was dosed daily at 25, 50,
100 and 200 mg/kg PO for 14 days (Fig. 4). Compound 34 was
found to be well tolerated for the duration of the study and dem-
onstrated a dose-dependent reduction in tumor growth (P = 0.008
comparing 200 mg/kg dose with vehicle-dosed controls on day
14) with stasis observed at the highest dose. The observed TGI cor-
related well with the 14 day end of study 1 h and 4 h post dose PD
knockdown (data not shown).
In summary, we have described a novel class of oral pan Akt
inhibitors based upon the dihydrothieno- and dihydrofuropyrimi-
dine scaffolds. Integration of these cores with various amino acids,
led to the identification of several analogs displaying enhanced
PKA selectivity which was used as a surrogate for general kinase
selectivity. Compound 34 was found to be well tolerated in a
14 day PC3-NCI prostate cancer xenograft model, demonstrating
a
dose-dependent tumor reduction with stasis observed at
8. (a) Breitenlechner, C. B.; Wegge, T.; Berillon, L.; Graul, K.; Marzenell, K.; Friebe,
W.-G.; Thomas, U.; Schumacher, R.; Huber, R.; Engh, R. A.; Masjost, B. J. Med.
Chem. 2004, 47, 1375; (b) Breitenlechner, C. B.; Friebe, W.-G.; Brunet, E.;
Werner, G.; Graul, K.; Thomas, U.; Kuenkele, K.-P.; Schaefer, W.; Gassel, M.;
Bossemeyer, D.; Huber, R.; Engh, R. A.; Masjost, B. J. Med. Chem. 2005, 48, 163;
(c) Rouse, M. B.; Seefeld, M. A.; Leber, J. D.; McNulty, K. C.; Sun, L.; Miller, W. H.;
Zhang, S.; Minthorn, E. A.; Concha, N. O.; Choudhry, A. E.; Schaber, M. D.;
Heerding, D. A. Bioorg. Med. Chem. Lett. 2009, 19, 1508.
200 mg/kg oral daily dosing. Further refinements to improve po-
tency, kinase selectivity and overall ADME properties are currently
underway, the results of which will be reported in future
communications.
Acknowledgements
9. Oxidation of the dihydrothienopyrimidine 17 to the sulfone 18 was carried out
using 5 equiv of m-CPBA in 86% yield.
10. Atomic coordinates for structure 26 bound to Akt1 and PKA were deposited
with the RCSB Protien Data Bank (PDB) under the accession codes 3OW4 for
Akt1 and 3OW3 for the PKA.
The authors thank James M. Graham and Dr. Francis X. Sullivan
for helpful insight and discussion in the preparation of this Letter.
11. A similar observation and strategy was recently published by researchers in
their efforts to obtain Akt selectivity over ROCK1. Lin, H.; Yamashita, D. S.;
Zeng, J.; Xie, R.; Wang, W.; Nidarmarthy, S.; Luengo, J. I.; Rhodes, N.; Knick, V.
B.; Choudhry, A. E.; Lai, Z.; Minithorn, E. A.; Strum, S. L.; Wood, E. R.; Elkins, P.
A.; Concha, N. O.; Heerding, D. A. Bioorg. Med. Chem. Lett. 2010, 20, 673.
12. This stereochemical assignment is consistent with maintaining the same
Reference and notes
1. (a) Osaki, M.; Oshimura, M.; Ito, H. Apoptosis 2004, 9, 667; (b) Murillo, H.;
Huang, H.; Schmidt, L. J.; Smith, D. I.; Tindall, D. J. Endocrinology 2001, 142,
4795; (c) Sun, M.; Paciga, J. E.; Feldman, R. I.; Yuan, Z.; Coppola, D.; Lu, Y. Y.;
Shelley, S. A.; Nicosia, S. V.; Cheng, J. Q. Cancer Res. 2001, 61, 5985.
overall amine and phenyl orientation as observed in the (R)
a-amino amide
2. (a) Barnett, S. F.; Defeo-Jones, D.; Fu, S.; Hancock, P. J.; Haskell, K. M.; Jones, R.
E.; Kahana, J. A.; Kral, A. M.; Leander, K.; Lee, L. L.; Malinowski, J.; McAvoy, E.
M.; Nahas, D. D.; Robinson, R. G.; Huber, H. E. J. Biochem. 2005, 385, 399; (b)
Masure, S.; Haefner, B.; Wesselink, J. J.; Hoefnagel, E.; Mortier, E.; Verhasselt, P.;
Tuytelaars, A.; Gordon, R.; Richardson, A. Eur. J. Biochem. 1999, 265, 353.
3. (a) Yap, T. A.; Garrett, M. D.; Walton, M. I.; Raynaud, F.; de Bono, J. S.; Workman,
P. Curr. Opin. Pharm. 2008, 8, 393; (b) Datta, S. R.; Brunet, A.; Greenberg, M. E.
Genes Dev. 1999, 13, 2905; (c) Graff, J. R. Expert Opin. Ther. Targets 2002, 6, 103;
(d) Steelman, L. S.; Kristin, M. S.; Chappell, W. H.; Horn, S.; Basecke, J.; Cervello,
M.; Nicoletti, F.; Libra, M.; Stivala, F.; Martelli, A. M.; McCubrey, J. A. Expert
Opin. Ther. Targets 2008, 12, 1139.
series.
13. Historically the selectivity profiles obtained for both the racemic and
enantiopure analogs were found to be essentially identical within this series
and therefore the enantiopure data was not deemed critical in our decision to
progress 34.
14. The measured in vitro clearance of 34 in hepatocytes was found to be; mice
Cl = 23 mL/min/kg, rat Cl = 25 mL/min/kg and human Cl = 14 mL/min/kg. The
measured in vitro clearance of 41 in hepatocytes was found to be; mice
Cl = 22.8 mL/min/kg and human Cl = 13.8 mL/min/kg.