C O M M U N I C A T I O N S
Table 1. Decarboxylative Olefination Reactionsa
our findings. Among these is the electrophilic decarboxylation of
electron-rich acids to form organomercurials by Hg(II) salts,5 the
Pesci reaction, a hemidecarboxylation of phthalic acids by mercury
salts,6 the decarboxylative substitution of unsaturated acids by Br2,7
+ 9
NBS,8 NO2
,
and H+,10 and palladium-catalyzed Heck-type
couplings of aromatic acid chlorides,11 anhydrides,12 and p-
nitrophenyl esters13 with various olefinic substrates. An important
distinction between our work and earlier palladium-catalyzed
processes is that the latter are proposed to evolve carbon monoxide,
not carbon dioxide as in our work, a proposal which we have
validated experimentally in the case of coupling of acid chlorides
and olefins (Supporting Information). The primary novelty of the
discovery we report is the decarboxylative palladation reaction, a
step which might be productively utilized in ways beyond the
coupling described, for example, in a palladium-catalyzed protio-
decarboxylation reaction of aromatic carboxylic acids or in alterna-
tive C-C bond-forming processes.14
Acknowledgment. Financial support from the National Science
Foundation is gratefully acknowledged. D.T. acknowledges financial
support from Dainippon Pharm. Co. Ltd (Japan), and M.R.M.
acknowledges an NSERC Postdoctoral Fellowship.
Supporting Information Available: Experimental procedures,
spectral data for new compounds (2d, 2g-r, and 4-6), and additional
experimental results (PDF). This material is available free of charge
References
(1) (a) de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33,
2379-2411. (b) Beletskaya, I. P.; Cheprakov, A. V. Chem. ReV. 2000,
100, 3009-3066.
(2) (a) Genet, J. P.; Blart, E.; Savignac, M. Synlett 1992, 715-717. (b)
Friestad, G. K.; Branchaud, B. P. Tetrahedron Lett. 1995, 36, 7047-
7050.
(3) Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem.
1998, 63, 5211-5215.
(4) For other examples of the importance of DMSO as a solvent in
Pd-catalyzed processes, see: (a) Larock, R. C.; Hightower, T. R. J. Org.
Chem. 1993, 58, 5298-5300. (b) van Benthem, R. A. T. M.; Hiemstra,
H.; Michels, J. J.; Speckamp, W. N. J. Chem. Soc., Chem. Commun. 1994,
357-359. (c) Steinhoff, B. A.; Fix, S. R.; Stahl, S. S. J. Am. Chem. Soc.
2002, 124, 766-767.
(5) (a) Gilman, H.; Wright, G. F. J. Am. Chem. Soc. 1933, 55, 3302-3314.
(b) Izumi, T.; Takeda, T.; Kasahara, A. Chem. Abstr. 1974, 81, 120756v.
(c) Deacon, G. B.; O’Donoghue, M. F.; Stretton, G. N.; Miller, J. M. J.
Organomet. Chem. 1982, 233, C1-C3.
(6) (a) Pesci, L. Atti Accad. Naz. Lincei 1901, 10, 362. (b) Leuck, G. J.;
Perkins, R. P.; Whitmore, F. C. J. Am. Chem. Soc. 1929, 51, 1831-1836.
(c) Newman, M. S.; Vander Zwan, M. C. J. Org. Chem. 1973, 38, 319-
321.
(7) (a) Grovenstein, E., Jr.; Henderson, U. V., Jr. J. Am. Chem. Soc. 1956,
78, 569. (b) Zwanenburg, D. J.; Wynberg, H. Recl. TraV. Chim. Pays-
Bas 1969, 86, 321-327.
(8) Cho, C.-G.; Park, J.-S.; Jung, I.-H.; Lee, H. Tetrahedron Lett. 2001, 42,
1065-1067.
(9) (a) Smith, L. I.; Harris, S. A. J. Am. Chem. Soc. 1935, 57, 1289-1292.
(b) Pitchumani, K.; Baskar, P.; Venkatachalapathy, C. Catal. Lett. 1993,
21, 157-163. (c) Cotelle, P.; Catteau, J. P. Synth. Commun. 1996, 26,
4105-4112.
a Conditions: acid (1 equiv), alkene (1.5 equiv), Pd(O2CCF3)2 (0.2 equiv),
Ag2CO3 (3 equiv), 5% DMSO-DMF, 120 °C, except as noted. b Reaction
conducted at 80 °C. c The bis-olefinated product 6 was also formed in 35%
yield.
(10) (a) Brown, B. R.; Elliott, W. W.; Hammick, D. L. J. Chem. Soc. 1951,
1384-1389. (b) Schubert, W. M.; Donohue, J.; Gardner, J. D. J. Am.
Chem. Soc. 1954, 76, 9-14. (c) Hay, R. W.; Taylor, M. J. J. Chem. Soc.,
Chem. Commun. 1966, 525-526. (d) Ghandi, S. S.; Hallas, G. Chem.
Ind. (London) 1977, 20, 841.
the data are consistent with the idea that a palladium(II)-sulfoxide
(or possibly sulfide) complex mediates the decarboxylation step
(but not ortho-palladation) and that this reaction is attenuated in
the presence of high concentrations of the sulfoxide ligand.4
(11) Blaser, H.-U.; Spencer, A. J. Organomet. Chem. 1982, 233, 267-274.
(12) (a) Stephan, M. S.; Teunissen, A. J. J. M.; Verzijl, G. K. M.; de Vries, J.
G. Angew. Chem., Int. Ed. 1998, 37, 662-664. (b) Shmidt, A. F.; Smirnov,
V. V. Kinet. Katal. 2000, 41, 743-744.
(13) Goossen, L. J.; Paetzold, J. Angew. Chem., Int. Ed. 2002, 41, 1237-
1241.
(14) Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2002,
124, 5286-5287.
Although the transformation we describe is new, there are many
important precedents which must be cited to appropriately reference
JA027523M
9
J. AM. CHEM. SOC. VOL. 124, NO. 38, 2002 11251