Organic Letters
Letter
group. J. Fluorine Chem. 2006, 127, 637. (c) Meanwell, N. A.
Synopsis of Some Recent Tactical Application of Bioisosteres in Drug
Design. J. Med. Chem. 2011, 54, 2529.
ACKNOWLEDGMENTS
■
This work was financially supported by the National Natural
Science Foundation of China (Nos. 21425208, 21672238, and
21421002), the National Basic Research Program of China
(973 Program) (No. 2015CB931900), the Strategic Priority
Research Program of the Chinese Academy of Sciences (No.
XDB20000000) and Natural Science Foundation of Zhejiang
Province (No. LR15B020002).
(8) For selected reviews, see: (a) Liu, Y.; Deng, M.; Zhang, Z.; Ding,
X.; Dai, Z.; Guan, J. Progress in Preparation of β,β-Difluorovinyl
Compounds. Youji Huaxue 2012, 32, 661. (b) Chelucci, G. Synthesis
and Metal-Catalyzed Reactions of gem-Dihalovinyl Systems. Chem.
Rev. 2012, 112, 1344. For a recent review of β-fluoride elimination,
see: (c) Fujita, T.; Fuchibe, K.; Ichikawa, J. Transition-Metal-
Mediated and -Catalyzed C−F Bond Activation by Fluorine
Elimination. Angew. Chem., Int. Ed. 2019, 58, 390.
(9) (a) Yamazaki, T.; Umetani, H.; Kitazume. Highly Stereoselective
SN2′ Reactions of Grignard Reagents towards CF3-Containing Allylic
Acetates. Tetrahedron Lett. 1997, 38, 6705. (b) Yamazaki, T.;
Umetani, H.; Kitazume, T. CuCN and Trimethylsilyl Chloride-
Catalyzed Regiospecific Grignard Reactions to CF3-Containing
Allylic Derivatives. Isr. J. Chem. 1999, 39, 193.
(10) These compounds can be readily prepared with high yields by
reaction of commercially available cinnamaldehydes with TMSCF3
and methyl chloroformate, see: Ikeda, K.; Futamura, T.; Hanakawa,
T.; Minakawa, M.; Kawatsura, M. Palladium-catalyzed enantioselec-
tive allylic alkylation of trifluoromethyl group substituted racemic and
acyclic unsymmetrical 1,3-disubstituted allylic esters with malonate
anions. Org. Biomol. Chem. 2016, 14, 3501.
(11) (a) Dudnik, A. S.; Fu, G. C. Nickel-Catalyzed Coupling
Reactions of Alkyl Electrophiles, Including Unactivated Tertiary
Halides, To Generate Carbon−Boron Bonds. J. Am. Chem. Soc. 2012,
134, 10693. (b) Xu, H.; Zhao, C.; Qian, Q.; Deng, W.; Gong, H.
Nickel-catalyzed cross-coupling of unactivated alkyl halides using
bis(pinacolato)diboron as reductant. Chem. Sci. 2013, 4, 4022.
(c) Gao, P.; Chen, L.-A.; Brown, M. K. Nickel-Catalyzed Stereo-
selective Diarylation of Alkenylarenes. J. Am. Chem. Soc. 2018, 140,
10653.
(12) (a) Luo, Y.-R. Handbook of Bond Dissociation Energies in
Organic Compounds; CRC Press, Boca Raton, FL, 2003. (b) Guo, W.-
H.; Min, Q.-Q.; Gu, J.-W.; Zhang, X. Rhodium-Catalyzed ortho-
Selective C−F Bond Borylation of Polyfluoroarenes with Bpin−Bpin.
Angew. Chem., Int. Ed. 2015, 54, 9075.
(13) For selected recent examples, see: (a) Reymond, S.; Cossy, J.
Copper-Catalyzed Diels−Alder Reactions. Chem. Rev. 2008, 108,
5359. (b) Jiang, X.; Wang, R. Recent Developments in Catalytic
Asymmetric Inverse-Electron-Demand Diels−Alder Reaction. Chem.
Rev. 2013, 113, 5515.
(14) Elsheimer, S.; Foti, C. J.; Bartberger, M. D. Reactions of 1,3-
Dibromo-1,1-difluoro Compounds with 1,8-Diazabicyclo[5.4.0]-
undec-7-ene. J. Org. Chem. 1996, 61, 6252.
(15) (a) Ichitsuka, T.; Takanohashi, T.; Fujita, T.; Ichikawa, J. A
versatile difluorovinylation method: Cross-coupling reactions of the
2,2-difluorovinylzinc−TMEDA complex with alkenyl, alkynyl, allyl,
and benzyl halides. J. Fluorine Chem. 2015, 170, 29. (b) Cao, C.-R.;
Ou, S.; Jiang, M.; Liu, J.-T. An efficient method for the synthesis of
gem-difluoroolefins. Tetrahedron Lett. 2017, 58, 482.
REFERENCES
(1) For selected reviews, see: (a) Mu
■
̈
ller, K.; Faeh, C.; Diederich, F.
Science 2007, 317, 1881. (b) O’Hagan, D. Understanding organo-
fluorine chemistry. An introduction to the C−F bond. Chem. Soc. Rev.
2008, 37, 308. (c) Meanwell, N. A. Synopsis of Some Recent Tactical
Application of Bioisosteres in Drug Design. J. Med. Chem. 2011, 54,
2529. (d) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.;
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in
Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to
the Market in the Last Decade (2001−2011). Chem. Rev. 2014, 114,
2432.
(2) For selected reviews, see: (a) Furuya, T.; Kamlet, A. S.; Ritter, T.
Catalysis for fluorination and trifluoromethylation. Nature 2011, 473,
470. (b) Tomashenko, O. A.; Grushin, V. V. Aromatic Trifluor-
omethylation with Metal Complexes. Chem. Rev. 2011, 111, 4475.
(c) Feng, Z.; Xiao, Y.-L.; Zhang, X. Transition-Metal (Cu, Pd, Ni)-
Catalyzed Difluoroalkylation via Cross-Coupling with Difluoroalkyl
Halides. Acc. Chem. Res. 2018, 51, 2264.
(3) (a) Xiao, Y.-L.; Guo, W.-H.; He, G.-Z.; Pan, Q.; Zhang, X.
Nickel-Catalyzed Cross-Coupling of Functionalized Difluoromethyl
Bromides and Chlorides with Aryl Boronic Acids: A General Method
for Difluoroalkylated Arenes. Angew. Chem., Int. Ed. 2014, 53, 9909.
(b) Xiao, Y.-L.; Min, Q.-Q.; Xu, C.; Wang, R.-W.; Zhang, X. Nickel-
Catalyzed Difluoroalkylation of (Hetero)Arylborons with Unactivated
1-Bromo-1,1-difluoroalkanes. Angew. Chem., Int. Ed. 2016, 55, 5837.
(c) Gu, J.-W.; Min, Q.-Q.; Yu, L.-C.; Zhang, X. Tandem
Difluoroalkylation-Arylation of Enamides Catalyzed by Nickel.
Angew. Chem., Int. Ed. 2016, 55, 12270. (d) Xu, C.; Guo, W.-H.;
He, X.; Guo, Y.-L.; Zhang, X.-Y.; Zhang, X. Difluoromethylation of
(hetero)aryl chlorides with chlorodifluoromethane catalyzed by
nickel. Nat. Commun. 2018, 9, 1170.
(4) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry;
Harper Collins College Publishers, New York, 1993.
(5) For nickel-mediated or catalyzed β-fluoride elimination, see:
(a) Ichitsuka, T.; Fujita, T.; Arita, T.; Ichikawa, J. Double C−F Bond
Activation through β-Fluorine Elimination: Nickel-Mediated [3 + 2]
Cycloaddition of 2-Trifluoromethyl-1-alkenes with Alkynes. Angew.
Chem., Int. Ed. 2014, 53, 7564. (b) Fujita, T.; Arita, T.; Ichitsuka, T.;
Ichikawa, J. Catalytic defluorinative [3 + 2] cycloaddition of
trifluoromethylalkenes with alkynes via reduction of nickel(II)
fluoride species. Dalton Trans 2015, 44, 19460. (c) Watabe, Y.;
Kanazawa, K.; Fujita, T.; Ichikawa, J. Nickel-Catalyzed Hydro-
alkenylation of Alkynes through C−F Bond Activation: Synthesis of
2-Fluoro-1,3-dienes. Synthesis 2017, 49, 3569.
(6) For a review, see: (a) Landelle, G.; Bergeron, M.; Turcotte-
Savard, M.-O.; Paquin, J.-F. Synthetic approaches to monofluor-
oalkenes. Chem. Soc. Rev. 2011, 40, 2867. For selected examples, see:
(b) Zhang, X.; Cao, S. Recent advances in the synthesis and C−F
functionalization of gem-difluoroalkenes. Tetrahedron Lett. 2017, 58,
375. (c) Lu, X.; Wang, Y.; Zhang, B.; Pi, J.-J.; Wang, X.-X.; Gong, T.-
J.; Xiao, B.; Fu, Y. Nickel-Catalyzed Defluorinative Reductive Cross-
Coupling of gem-Difluoroalkenes with Unactivated Secondary and
Tertiary Alkyl Halides. J. Am. Chem. Soc. 2017, 139, 12632.
(7) (a) Leriche, C.; He, X.; Chang, T. C.; Liu, H. Reversal of the
Apparent Regiospecificity of NAD(P)H-Dependent Hydride Trans-
fer: The Properties of the Difluoromethylene Group, A Carbonyl
Mimic. J. Am. Chem. Soc. 2003, 125, 6348. (b) Magueur, G.; Crousse,
́
́
́
B.; Ourevitch, M.; Bonnet-Delpon, D.; Begue, J.-P. Fluoro-
artemisinins: When a gem-difluoroethylene replaces a carbonyl
D
Org. Lett. XXXX, XXX, XXX−XXX