Bioconjugate Chemistry
ARTICLE
(8) Baron, R., Willner, B., and Willner, I. (2007) Biomolecule-
nanoparticle hybrids as functional units for nanobiotechnology. Chem.
Commun. (Cambridge, U. K.) 323–332.
(9) Hutchings, G. J., Brust, M., and Schmidbaur, H. (2008) Gold-an
introductory perspective. Chem. Soc. Rev. 37, 1759–1765.
(10) Daniel, M. C., and Astruc, D. (2004) Gold nanoparticles:
assembly, supramolecular chemistry, quantum-size-related properties,
and applications toward biology, catalysis, and nanotechnology. Chem.
Rev. 104, 293–346.
(11) Seeman, N. C. (2003) DNA in a material world. Nature
421, 427–431.
(12) Mirkin, C. A., Letsinger, R. L., Mucic, R. C., and Storhoff, J. J.
(1996) A DNA-based method for rationally assembling nanoparticles
into macroscopic materials. Nature 382, 607–609.
(29) Seela, F., and Driller, H. (1986) Palindromic oligonucleo-
tides containing 7-deaza-20-deoxyguanosine: solid-phase synthesis
of d[(p)GG*AATTCC] octamers and recognition by the endodeox-
yribonuclease EcoRI. Nucleic Acids Res. 14, 2319–2332.
(30) Turkevich, J., Stevenson, P. C., and Hillier, J. (1951) A study of
the nucleation and growth processes in the synthesis of colloidal gold.
Discuss. Faraday Soc. 11, 55–57.
(31) Demers, L. M., Mirkin, C. A., Mucic, R. C., Reynolds, R. A.,
Letsinger, R. L., Elghanian, R., and Viswanadham, G. (2000) A fluores-
cence-based method for determining the surface coverage and hybri-
dization efficiency of thiol-capped oligonucleotides bound to gold thin
films and nanoparticles. Anal. Chem. 72, 5535–5541.
(32) Seela, F., Budow, S., and Leonard, P. (2007) Oligonucleotides
forming an i-motif: the pH-dependent assembly of individual strands
and branched structures containing 20-deoxy-5-propynylcytidine. Org.
Biomol. Chem. 5, 1858–1872.
(33) Seela, F., and Budow, S. (2006) pH-Dependent assembly of
DNA-gold nanoparticles based on the i-motif: a switchable device
with the potential of a nanomachine. Helv. Chim. Acta 89, 1978–
1985.
(34) Beermann, B., Carrillo-Nava, E., Scheffer, A., Buscher, W.,
Jawalekar, A. M., Seela, F., and Hinz, H.-J. (2007) Association tempera-
ture governs structure and apparent thermodynamics of DNA-gold
nanoparticles. Biophys. Chem. 126, 124–131.
(35) Dinu, C. Z., Opitz, J., Pompe, W., Howard, J., Mertig, M., and
Diez, S. (2006) Parallel manipulation of bifunctional DNA molecules on
structured surfacesusing kinesin-drivenmicrotubules. Small 2, 1090–1098.
(36) Erler, C., and Mertig, M. (2009) Incorporation of DNA
networks into microelectrode structures. J. Vac. Sci. Technol. B 27,
939–943.
(13) Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A., and
Letsinger, R. L. (1998) One-pot colorimetric differentiation of poly-
nucleotides with single base imperfections using gold nanoparticle
probes. J. Am. Chem. Soc. 120, 1959–1964.
(14) Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E.,
Loweth, C. J., Bruchez, M. P., Jr., and Schultz, P. G. (1996) Organization
of ’nanocrystal molecules’ using DNA. Nature 382, 609–611.
(15) Zhao, W., Lin, L., and Hsing, I. M. (2009) Rapid synthesis
of DNA-functionalized gold nanoparticles in salt solution using mono-
nucleotide-mediated conjugation. Bioconjugate Chem. 20, 1218–1222.
(16) Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A., and
Kornberg, R. D. (2007) Structure of a thiol monolayer-protected
gold nanoparticle at 1.1 Å resolution. Science 318, 430–433.
(17) Letsinger, R. L., Elghanian, R., Viswanadham, G., and Mirkin,
C. A. (2000) Use of a steroid cyclic disulfide anchor in constructing
gold nanoparticle-oligonucleotide conjugates. Bioconjugate Chem.
11, 289–291.
(37) Schulhof, J. C., Molko, D., and Teoule, R. (1987) The final
deprotection step in oligonucleotide synthesis is reduced to a mild and
rapid ammonia treatment by using labile base-protecting groups. Nucleic
Acids Res. 15, 397–416.
(18) Li, Z., Jin, R., Mirkin, C. A., and Letsinger, R. L. (2002)
Multiple thiol-anchor capped DNA-gold nanoparticle conjugates.
Nucleic Acids Res. 30, 1558–1562.
(19) Kumar, A., Phadtare, S., Pasricha, R., Guga, P., Ganesh, K. N., and
Sastry, M. (2003) Assembling gold nanoparticles in solution using phos-
phorothioate DNA as structural interconnects. Curr. Sci. 84, 71–74.
(20) Lee, J. H., Wernette, D. P., Yigit, M. V., Liu, J., Wang, Z., and Lu,
Y. (2007) Site-specific control of distances between gold nanoparticles
using phosphorothioate anchors on DNA and a short bifunctional
molecular fastener. Angew. Chem. 119, 9164–9168.
(21) Agris, P. F. (1996) The Importance of being modified: roles
of modified nucleosides and Mg2þ in RNA structure and function,
Progress in Nucleic Acid Res and Molecular Biology (Waldo, E. C., and
Klvle, M., Eds.) pp 79ꢀ129, Vol. 53, Academic Press, New York.
(22) Rao, T. S., Durland, R. H., Seth, D. M., Myrick, M. A.,
Bodepudi, V., and Revankar, G. R. (1995) Incorporation of
20-deoxy-6-thioguanosine into G-rich oligodeoxyribonucleotides
inhibits G-tetrad formation and facilitates triplex formation. Bio-
chemistry 34, 765–772.
(23) Nikiforov, T. T., and Connolly, B. A. (1991) The synthesis
of oligodeoxynucleotides containing 4-thiothymidine residues.
Tetrahedron Lett. 32, 3851–3854.
(24) Waters, T. R., and Connolly, B. A. (1992) Straightforward
synthesis of 6-thiodeoxyguanosine and its incorporation into oligodeox-
ynucleotides. Nucleosides Nucleotides Nucleic Acids 11, 985–998.
(25) Yoshida, S., Yamada, M., Masaki, S., and Saneyoshi, M.
(1979) Utilization of 20-deoxy-6-thioguanosine 50-triphosphate in
DNA synthesis in vitro by DNA polymerase R from calf thymus.
Cancer Res. 39, 3955–3958.
(38) Christopherson, M. S., and Broom, A. D. (1991) Synthesis of
oligonucleotides containing 20-deoxy-6-thioguanosine at a predeter-
mined site. Nucleic Acids Res. 19, 5719–5724.
(39) Newmark, R. A., and Hill, J. R. (1976) Assignment of primary
and secondary amide carbonyl resonances in carbon-13 NMR. J. Magn.
Reson. 21, 1–7.
(40) Pfeffer, P. E., Valentine, K. M., and Parrish, F. W. (1979)
Deuterium-induced differential isotope shift 13C NMR. 1. Resonance
reassignments of mono- and disaccharides. J. Am. Chem. Soc. 101,
1265–1274.
(41) Winkeler, H. D., and Seela, F. (1983) Synthesis of 2-amino-
7-(20-deoxy-β-D-erythro- pentofuranosyl)-3,7-dihydro-4H-pyrrolo[2,3-
d]pyrimidin-4-one, a new isostere of 20-deoxyguanosine. J. Org. Chem.
48, 3119–3122.
(42) Connolly, B. A., and Newman, P. C. (1989) Synthesis and
properties of oligonucleotides containing 4-thiothymidine, 5-methyl-2-
pyrimidinone-1-β-D-(20-deoxyriboside) and 2-thiothymidine. Nucleic
Acids Res. 17, 4957–4974.
(43) Coleman, R. S., and Kesicki, E. A. (1994) Synthesis and
postsynthetic modification of oligodeoxynucleotides containing 4-thio-
20-deoxyuridine (ds4U). J. Am. Chem. Soc. 116, 11636–11642.
(44) Coleman, R., S., McCary, J. L., and Perez, R., J. (1999)
Thionucleoside disulfides as covalent constraints of DNA conformation.
Tetrahedron 55, 12009–12022.
(45) Milton, J., Connolly, B. A., Nikiforov, T. T., and Cosstick, R.
(1993) Site-specific disulfide bridges in oligodeoxyribonucleotide du-
plexes containing 6-mercaptopurine and 4-thiothymine bases. J. Chem.
Soc., Chem. Commun. 779–780.
(46) Uznanski, P., Kurjata, J., and Bryszewska, E. (2009) Mod-
ification of gold nanoparticle surfaces with pyrenedisulfide in ligand-
protected exchange reactions. Mater. Sci.-Pol. 27, 659–670.
(47) Hurst, S. J., Lytton-Jean, A. K. R., and Mirkin, C. A. (2006)
Maximizing DNA loading on a range of gold nanoparticle sizes.
Anal. Chem. 78, 8313–8318.
(26) Seela, F., Steker, H., Driller, H., and Bindig, U. (1987) 2-Amino-
20-desoxytubercidin und verwandte Pyrrolo[2,3-d]pyrimidinyl-20-deso-
xyribofuranoside. Liebigs Ann. Chem. 15–19.
(27) User’s manual of the DNA synthesizer, Applied Biosystems,
Weiterstadt, Germany.
(28) Graham, D., Parkinson, J. A., and Brown, T. (1998) DNA
duplexes stabilized by modified monomer residues: synthesis
and stability. J. Chem. Soc., Perkin Trans. 1 1131–1138.
806
dx.doi.org/10.1021/bc200069j |Bioconjugate Chem. 2011, 22, 794–807